ICSD: Integrated Cloud Services Dataset

  • Samar SH. HaytamyEmail author
  • Hisham A. KholidyEmail author
  • Fatma A. OmaraEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10975)


The service composition problem in Cloud computing is formulated as a multiple criteria decision making problem. Due to the extensive search space, Cloud service composition is addressed as an NP-hard problem. Using a proper dataset is considered one of the main challenges to evaluate the efficiency of the developed service composition algorithms. According to the work in this paper, a new dataset has been introduced, called Integrated Cloud Services Dataset (ICSD). This dataset is constructed by amalgamating the Google cluster-usage traces, and a real QoS dataset. To evaluate the efficiency of the ICSD dataset, a proof of concept has been done by implementing and evaluating an existing Cloud service compositing approach; PSO algorithm with skyline operator using ICSD dataset. According to the implementation results, it is found that the ICSD dataset achieved a high degree of optimality with low time complexity, which significantly increases the ICSD dataset accuracy in Cloud services composition environment.


Cloud computing Cloud services composition Non-functional attributes QoS dataset Quality of services Service selection 


  1. 1.
    Motahari-Nezhad, H.R., Stephenson, B., Singhal, S.: Outsourcing business to cloud computing services: opportunities and challenges. IEEE Internet Comput. 10(4), 1–17 (2009)Google Scholar
  2. 2.
    Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and managing web services: issues, solutions, and directions. VLDB J.––Int. J. Very Large Data Bases 17(3), 537–572 (2008)CrossRefGoogle Scholar
  3. 3.
    Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Stoica, I., et al.: Above the clouds: a Berkeley view of cloud computing. Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS 28(13) (2009)Google Scholar
  4. 4.
    Gutierrez-Garcia, J.O., Sim, K. M.: Self-organizing agents for service composition in cloud computing. In: 2010 IEEE Second International Conference on Cloud Computing Technology and Science (CloudCom), Indianapolis, USA, pp. 59–66 (2010)Google Scholar
  5. 5.
    Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with end-to-end QoS constraints. ACM Trans. Web (TWEB) 1(1), 1–26 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware middleware for web services composition. IEEE Trans. Software Eng. 30(5), 311–327 (2004)CrossRefGoogle Scholar
  7. 7.
    Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive service composition based on reinforcement learning. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 92–107. Springer, Heidelberg (2010). Scholar
  8. 8.
    Yu, T., Lin, K.-J.: Service selection algorithms for composing complex services with multiple QoS constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 130–143. Springer, Heidelberg (2005). Scholar
  9. 9.
    Selcuk, K., Li, W.S., Phan, T., Zhou, M.: Frontiers in information and software as services. In: ICDE: 2009 IEEE 25th International Conference on Data Engineering, Shanghai, China, pp. 1761–1768 (2009)Google Scholar
  10. 10.
    Zheng, Z., Zhang, Y., Lyu, M.R.: Distributed QoS evaluation for real-world web services. In: 2010 IEEE International Conference on Web Services (ICWS), Miami, FL, USA, pp. 83–90 (2010)Google Scholar
  11. 11.
    Al-Masri, E., Mahmoud, Q.H.: Discovering the best web service: a neural network-based solution. In: IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, pp. 4250–4255 (2009)Google Scholar
  12. 12.
    Jiang, W., Lee, D., Hu, S.: Large-scale longitudinal analysis of soap-based and restful web services. In: 2012 IEEE 19th International Conference on Web Services (ICWS), Honolulu, HI, USA, pp. 218–225 (2012)Google Scholar
  13. 13.
    Cloud armor project. Last accessed 31 Mar 2018
  14. 14.
    TPC-W Benchmark. Last accessed 31 Mar 2018
  15. 15.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: state of the art and research challenges. Computer 40(11), 38–45 (2007)CrossRefGoogle Scholar
  16. 16.
    Liang, Q., Wu, X., Lau, H.C.: Optimizing service systems based on application-level QoS. IEEE Trans. Serv. Comput. 2(2), 108–121 (2009)CrossRefGoogle Scholar
  17. 17.
    Sheng, Q.Z., Benatallah, B., Maamar, Z., Ngu, A.H.: Configurable composition and adaptive provisioning of web services. IEEE Trans. Serv. Comput. 2(1), 34–49 (2009)CrossRefGoogle Scholar
  18. 18.
    Jula, A., Sundararajan, E., Othman, Z.: Cloud computing service composition: a systematic literature review. Expert Syst. Appl. 41(8), 3809–3824 (2013)CrossRefGoogle Scholar
  19. 19.
    Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans. Software Eng. 33(6), 369–384 (2007)CrossRefGoogle Scholar
  20. 20.
    Liu, S., Wei, Y., Tang, K., Qin, A.K., Yao, X.: Qos-aware long-term based service composition in cloud computing. In: 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, pp. 3362–3369 (2015)Google Scholar
  21. 21.
    Mistry, S., Bouguettaya, A., Dong, H., Qin, A.K.: Metaheuristic optimization for long-term IaaS service composition. IEEE Trans. Serv. Comput. 11(1), 131–143 (2016)CrossRefGoogle Scholar
  22. 22.
    Wang, S., Sun, Q., Zou, H., Yang, F.: Particle swarm optimization with skyline operator for fast cloud-based web services composition. Mobile Netw. Appl. 18(1), 116–121 (2013)CrossRefGoogle Scholar
  23. 23.
    Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format+schema. Google Inc., White Paper, pp. 1–14 (2011)Google Scholar
  24. 24.
    Goiri, Í., Guitart, J., Torres, J.: Economic model of a cloud provider operating in a federated cloud. Inf. Syst. Front. 14(4), 827–843 (2012)CrossRefGoogle Scholar
  25. 25.
    Rackspace Home Page. Last accessed 31 Mar 2018
  26. 26.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. ACM Trans. Database Syst. (TODS) 30(1), 41–82 (2005)CrossRefGoogle Scholar
  27. 27.
    Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)CrossRefGoogle Scholar
  28. 28.
    AlRashidi, M.R., El-Hawary, M.E.: Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects. IEEE Trans. Power Syst. 22(4), 2030–2038 (2007)CrossRefGoogle Scholar
  29. 29.
    Walpole, R.E., Myers, S.L., Ye, K., Myers, R.H.: Probability & Statistics for Engineers & Scientists. Pearson, Upper Saddle River (2007)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceFayoum UniversityFayoumEgypt
  2. 2.Distributed Analytics and Security Institute (DASI)Mississippi State University (MSU)StarkvilleUSA
  3. 3.Department of Computer ScienceCairo UniversityCairoEgypt

Personalised recommendations