Skip to main content

Resilient Optimal Power Flow with Evolutionary Computation Methods: Short Survey

  • Chapter
  • First Online:

Part of the book series: Power Systems ((POWSYS))

Abstract

Economic issues of power systems are formulated as optimization problems to enhance reliable operation and safe security of the real-time and hierarchical systems including complex control structures. The optimization problems have been formulated as combination of objective functions and constraints which Optimal Power Flow (OPF) must be increased to combine security constraints . The OPF problem is basically a network analysis challenge and the main objective of this challenge is to plan and to predict the undesirable situations that may arise by adding various assumptions to the account. This challenge can be solved using well-known numerical approaches, however these include derivatives and the solution of them is relatively difficult. However, the Evolutionary Computation (EC) based optimization algorithms provide more easy solutions for the OPF. In this chapter, the algorithms that contain the heuristic methods used on EC based algorithms and their applications on OPF are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Zima, M. Bockarjova, Operation, Monitoring and Control Technology of Power Systems, Lecture Notes 227-0528-00 (ITET ETH, Zurich, 2007)

    Google Scholar 

  2. B. Stott, O. Alsac, A.J. Monticelli, Security analysis and optimization. IEEE Invited Pap. 75(12), 1623–1644 (1986)

    Google Scholar 

  3. http://circuitglobe.com/power-system.html

  4. P. Schavemaker, L. Van der Sluis, Electrical Power System Essentials (Wiley, 2017)

    Google Scholar 

  5. http://www.yildiz.edu.tr/~inan/LU_Hesap/Yuk_Akisi_Genel_Bilgi.doc

  6. J. Carpentier, Contribution to the study of the economic dispatching. Bull La Societe Fr Des Electr 3, 431–447 (1962)

    Google Scholar 

  7. B. Ghaddar, J. Marecek, M. Mevissen, Optimal power flow as a polynomial optimization problem. IEEE Trans. Power Syst. 31, 539–546 (2016)

    Article  Google Scholar 

  8. J. Lin, V.O.K. Li, K.C. Leung, A.Y.S. Lam, Optimal power flow with power flow routers. IEEE Trans. Power Syst., 1–13 (2016)

    Google Scholar 

  9. S. Frank, I. Steponavice, S. Rebennack, Optimal power flow: a bibliographic survey-I: formulations and deterministic methods. Energy Syst. 3, 221–258 (2012)

    Article  Google Scholar 

  10. K.C. Almeida, A. Kocholik, Solving III-posed optimal power flow problems via Fritz-John optimality conditions. IEEE Trans. Power Syst. 1–10 (2016)

    Google Scholar 

  11. A. Vaccaro, C.A. Canizares, A knowledge-based framework for power flow and optimal power flow analyses, IEEE Trans. Smart Grid 1–11 (2016)

    Google Scholar 

  12. V. Radziukynas, I. Radziukyniene, Optimization Methods Application to Optimal Power Flow in Electric Power Systems (Springer, Berlin Heidelberg, 2009)

    Book  Google Scholar 

  13. A.M. Shaheen, R.A. El-Sehiemy, S.M. Farrag, Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm, 10, 1634–1647 (2016)

    Google Scholar 

  14. S. Gill, I. Kockar, G.W. Ault, Dynamic optimal power flow for active distribution networks. IEEE Trans. Power Syst. 29, 121–131 (2014)

    Article  Google Scholar 

  15. T. Niknam, M.R. Narimani, M. Jabbari, Dynamic optimal power flow using hybrid particle swarm optimization and simulated annealing. Int. Trans. Electr. Energy Syst. 23, 975–1001 (2013)

    Article  Google Scholar 

  16. Y. Xu, J. Ma, Z.Y. Dong, D.J. Hill, Robust transient stability-constrained optimal power flow with uncertain dynamic loads. IEEE Trans. Smart Grid, 1–11 (2016)

    Google Scholar 

  17. Y. Xu, Z.Y. Dong, Z. Xu, R. Zhang, K.P. Wong, in Power System Transient Stability Constrained Optimal Power Flow: A Comprehensive Review, IEEE Power Energy Society General Meeting, San Diego, CA (2012), pp. 1–7

    Google Scholar 

  18. M. Perninge, C. Hamon, A stochastic optimal power flow problem with stability constraints—part II: the optimization problem. IEEE Trans. Power Syst. 28, 1849–1857 (2013)

    Article  Google Scholar 

  19. A. Vaccaro, C. Canizares, An Affine arithmetic-based framework for uncertain power flow and optimal power flow studies. IEEE Trans. Power Syst. 1–15 (2016)

    Google Scholar 

  20. M. Bazrafshan, N. Gatsis, Decentralized stochastic optimal power flow in radial networks with distributed generation. IEEE Trans. Smart Grid, 1–15 (2016)

    Google Scholar 

  21. J. Gong, D. Xie, C. Jiang, Y. Zhang, A new solution for stochastic optimal power flow: combining limit relaxation with iterative learning control. J. Electr. Eng. Technol. 9, 80–89 (2014)

    Article  Google Scholar 

  22. H. Zhang, P. Li, Probabilistic analysis for optimal power flow under uncertainty. IET Gener. Transm. Distrib. 4, 553–561 (2010)

    Article  Google Scholar 

  23. A. Schellenberg, W. Rosehart, J. Aguado, Cumulant-based probabilistic optimal power flow (P-OPF) with gaussian and gamma distributions. IEEE Trans. Power Syst. 20, 773–781 (2005)

    Article  Google Scholar 

  24. G. Verbic, C.A. Canizares, Probabilistic optimal power flow in electricity markets based on a two-point estimate method. IEEE Trans. Power Syst. 21, 1883–1893 (2006)

    Article  Google Scholar 

  25. D. Ke, C.Y. Chung, Y. Sun, A novel probabilistic optimal power flow model with uncertain wind power generation described by customized gaussian mixture model. IEEE Trans. Sustain Energy 7, 200–212 (2016)

    Article  Google Scholar 

  26. M. Oua, Y. Xue, X.P. Zhang, Iterative DC optimal power flow considering transmission network loss. Electr. Power Compon. Syst., 1–11 (2016). http://dx.doi.org/10.1080/15325008.2016.1147104

  27. V. Sarkar, S.A. Khaparde, Optimal LMP decomposition for the ACOPF calculation. IEEE Trans. Power Syst. 26, 1714–1723 (2011)

    Article  Google Scholar 

  28. T. Akbari, M. Tavakoli Bina, Linear approximated formulation of AC optimal power flow using binary discretisation. IET Gener. Transm. Distrib. 10, 1117–1123 (2016)

    Article  Google Scholar 

  29. W. Feng, L.A. Tuan, L.B. Tjernberg, A. Mannikoff, A. Bergman, A new approach for benefit evaluation of multiterminal VSC-HVDC using a proposed mixed AC/DC optimal power flow. IEEE Trans. Power Deliv. 29, 432–443 (2014)

    Article  Google Scholar 

  30. S. Bahrami, F. Therrien, V.W.S. Wong, J. Jatskevich, Semidefinite relaxation of optimal power flow for AC-DC grids. IEEE Trans. Power Syst., 1–16 (2016)

    Google Scholar 

  31. A.K. Khamees, N.M. Badra, A.Y. Abdelaziz, Optimal power flow methods: a comprehensive survey. Int. Electr. Eng. J. (IEEJ) 7(4), 2228–2239 (2016)

    Google Scholar 

  32. T. Lewis, A Brief History of Artificial Intelligence, Live Science (22 June 2015)

    Google Scholar 

  33. S.S. Rao, Engineering Optimization: Theory & Practice, 4th edn. (Wiley, 2009)

    Google Scholar 

  34. E.K.P. Chong, S.H. Zak, An Introduction to Optimization, 2nd edn. (Wiley, 2001)

    Google Scholar 

  35. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  36. L. Zade, Fuzzy set as a basis for theory of possibility. Fuzzy Sets Syst. 1(2), 3–28 (1976)

    MathSciNet  Google Scholar 

  37. R.B. Devi, E. Barlaskar, O.B. Devi, S.P. Medhi, R.R. Shimray, Survey on evolutionary computation techniques and its application in different fields. Int. J. Inf. Theory 3(3) (2014)

    Google Scholar 

  38. Y. Liu, K.M. Passino, Swarm Intelligence: Literature Overview (The Ohio State University Dept. of Electrical Engineering, 2000)

    Google Scholar 

  39. J.H. Holland, Adaptation in Natural and Artificial Systems, 1st edn. (University of Michigan Press, Cambridge, MA 1975)

    Google Scholar 

  40. D. Whitley, A.M. Sutton, in Genetic Algorithms—A Survey of Models and Methods. Handbook of Natural Computing, (Springer, 2012), pp. 637–671. ISBN: 978-3-540-92909-3

    Google Scholar 

  41. Y. Liu, K.M. Passino, Swarm Intelligence: Literature Overview (Ohio State University Dept. of Electrical Engineering, 2000)

    Google Scholar 

  42. G. Beni, J. Wang, in Swarm Intelligence in Cellular Robotic Systems, NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, 1989

    Google Scholar 

  43. A. Chakraborty, A.K. Kar, Swarm intelligence: a review of algorithms, in Nature-Inspired Computing and Optimization, Modeling and Optimization in Science and Technologies, vol. 10 (Springer, 2017), pp. 475–494

    Google Scholar 

  44. S. Baluja, Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning (Technical Report CMU-CS-94-163), Carnegie Mellon University, USA, 1994

    Google Scholar 

  45. S. Yang, X. Yao, Population-based incremental learning with associative memory for dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008). https://doi.org/10.1109/TEVC.2007.913070

    Article  Google Scholar 

  46. F. Glover, Tabu search: part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  Google Scholar 

  47. F. Glover, Tabu search: part II. ORSA J. Comput. 2(1), 4–32 (1990)

    Article  Google Scholar 

  48. http://www.springer.com/gp/book/9783662463529

  49. A. Ibrahim, Sh. Rahnamayan, M. Vargas Martin, Miguel, Simulated raindrop algorithm for global optimization. Can. Conf. Electr. Comput. Eng., 1–8 (2014). https://doi.org/10.1109/ccece.2014.6901103

  50. http://www.cleveralgorithms.com/nature-inspired/probabilistic/boa.html

  51. http://www.thewdo.com/

  52. http://www.citeuluke.org

  53. M. Mitchell, J.H. Holland, S. Forrest, When will a genetic algorithm outperform hill climbing, in Advances in Neural Information Processing Systems, (1994), pp. 51–58

    Google Scholar 

  54. J.R. Sampson, Adaptive Information Processing (Springer, 1976), pp. 131–135

    Google Scholar 

  55. T. Kohonen, The self-organizing map. Neurocomputing 21(1), 1–6 (1998)

    Article  MathSciNet  Google Scholar 

  56. J. Kregting, R.C. White, Adaptive Random Search (Technical Report TH-Report 71-E-24), Eindhoven University of Technology, Eindhoven, Netherlands, 1971

    Google Scholar 

  57. http://www.cleveralgorithms.com/natureinspired/stochastic/hill_climbing_search.html

  58. M. Sayadi, R. Ramezanian, N. Ghaffari-Nasab, A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems. Int. J. Ind. Eng. Comput. 1(1), 1–10 (2010)

    Google Scholar 

  59. http://www.bracil.net

  60. J. Duch, A. Arenas, Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005)

    Article  Google Scholar 

  61. Z.I. Botev, A. Ridder, L. Rojas Nandayapa, Semiparametric cross entropy for rare-event simulation. J. Appl. Probab. 53(3), 633–649 (2016)

    Article  MathSciNet  Google Scholar 

  62. Ch. Ramdane, S. Chikhi, Negative selection algorithm: recent improvements and its application in intrusion detection system. Int. J. Comput. Acad. Res. (IJCAR) 6(2), 20–30 (2017)

    Google Scholar 

  63. J. Kytojoki, T. Nuortio, O. Braysy, M. Gendreau, An efficient variable neighborhood search heuristic for very large scale vehicle routing problems. Comput. Oper. Res. 34(9), 2743–2757 (2007)

    Article  Google Scholar 

  64. B. Khan, P. Singh, Optimal power flow techniques under characterization of conventional and renewable energy sources: a comprehensive analysis. Hindawi J. Eng. (2017)

    Google Scholar 

  65. http://futurearchitectureplatform.org/news/28/ai-architecture-intelligence/

  66. B. Baydar, H. Gozde, M.C. Taplamacioglu, A research on evolutionary computation techniques in optimal power flow solution. Int. J. Tech. Phys. Probl. Eng. (IJTPE) 9(33), no. 4, 26–33 (2017)

    Google Scholar 

  67. L.L. Lai, J.T. Ma, R. Yokoyama, M. Zhao, Improved genetic algorithms for optimal power flow under both normal and contingent operation states. Electr. Power Energy Syst. 19(5), 287–292 (1997). (Elsevier)

    Article  Google Scholar 

  68. M.A. Abido, Optimal power flow using particle swarm optimization. Electr. Power Energy Syst. 24, 563–571 (2002). (Elsevier)

    Article  Google Scholar 

  69. M.A. Abido, Optimal power flow using Tabu search algorithm. Electr. Power Compon. Syst. 30(5), 469–483 (2002)

    Article  Google Scholar 

  70. T. Bouktir, L. Slimani, Optimal power flow of the algerian electrical network using an ant colony optimization method. Leonardo J. Sci. 6, 43–57 (2005)

    Google Scholar 

  71. S. Sayah, K. Zehar, Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Convers. Manage. 49, 3036–3042 (2008). (Elsevier)

    Article  Google Scholar 

  72. A.A. Abou El Elaa, M. Abido, S.R. Spea, Optimal power flow using differential evolution algorithm. Electr. Power Syst. Res. 80, 878–885 (2010). (Elsevier)

    Article  Google Scholar 

  73. M. Li, W. Liu, X. Wang, An improved particle swarm optimization algorithm for optimal power flow. IPEMC 25, 2448–2450 (2009)

    Google Scholar 

  74. S.R. Tsai, R.H. Liang, Y.T. Chen, W.T. Tseng, Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electr. Power Syst. Res. 81, 1466–1474 (2011). (Elsevier)

    Article  Google Scholar 

  75. I. Oumarou, D. Jiang, C. Yijia, Particle swarm optimization applied to optimal power flow solution. Int. Conf. Nat. Comput. (ICNC) 8(9), 284–288 (2009)

    Google Scholar 

  76. C. Sumpavakup, I. Srikun, S. Chusanapiputt, A solution to the optimal power flow using artificial bee colony algorithm. Int. Conf. Power Syst. Technol. (ICPST) 7(10) (2010)

    Google Scholar 

  77. A. Bhattacharya, P.K. Chattopadhyay, Application of biogeography-based optimization to solve different optimal power flow problems. Inst. Eng. Technol. (IETDL) 5(1), 70–80 (2011)

    Google Scholar 

  78. A.A. Esmin, G.L. Torres, Application of particle swarm optimization to optimal power systems. Int. J. Innovative Comput. Inf. Control (ICIC) 8(3(A)) (2011)

    Google Scholar 

  79. U. Guvenc, S. Duman, Y. Sonmez, N. Yorukeren, Optimal power flow using gravitational search algorithm. Energy Convers. Manage. 59, 86–95 (2012). (Elsevier)

    Article  Google Scholar 

  80. C. Sumpavakup, I. Srikun, S. Chusanapiputt, A solution to multi-objective optimal power flow using hybrid cultural-based bees algorithm. IEEE 2(12) (2012)

    Google Scholar 

  81. O. Herbadji, K. Nadhir, L. Slimani, T. Bouktir, Optimal power flow with emission controlled using firefly algorithm. IEEE 9(13), 4673–5814 (2013)

    Google Scholar 

  82. P.D. Bamane, A.N. Kshirsagar, S. Raj, H.T. Jadhav, Temperature Dependent Optimal Power Flow Using GBest - Guided Artificial Bee, International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), vol. 1, issue 14, pp. 321–327, 2014

    Google Scholar 

  83. S.S. Reddy, S. Rathnam, Optimal power flow using glowworm swarm optimization. Electr. Power Energy Syst. 80, 128–139 (2016). (Elsevier)

    Article  Google Scholar 

  84. A.A. Mohamed, Y.S. Mohamed, A.A. El-Gaafary, Optimal power flow using moth swarm algorithm. Electr. Power Syst. Res. 142, 190–206 (2017). (Elsevier)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basar Baydar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baydar, B., Gozde, H., Taplamacioglu, M.C., Kucuk, A.O. (2019). Resilient Optimal Power Flow with Evolutionary Computation Methods: Short Survey. In: Mahdavi Tabatabaei, N., Najafi Ravadanegh, S., Bizon, N. (eds) Power Systems Resilience. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-94442-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94442-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94441-8

  • Online ISBN: 978-3-319-94442-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics