Skip to main content

Copper—A Modern Bioelement

  • Chapter
  • First Online:
Copper and Bacteria

Part of the book series: SpringerBriefs in Molecular Science ((SB BIOMETALS))

Abstract

From the analysis of the evolution of copper-containing enzymes, it emerges that copper is a modern bioelement. It was not used as an enzyme cofactor before the advent of oxygen evolution. In the anoxic world, copper in the biosphere was in its reduced, Cu+ state, which formed insoluble copper sulfide, promoted by the abundance of hydrogen sulfide in the atmosphere. Once the world became oxic, Cu+ was oxidized to Cu2+, which is readily soluble in the aqueous phase. The ensuing bioavailability of copper led to the evolution of cuproenzymes and copper-responsive regulators of gene expression. Indeed, all known copper-containing enzymes catalyze redox reactions involving oxygen in one form or another. Copper detoxification systems, on the other hand, have an earlier, independent evolutionary origin. The redox-active nature of copper of course makes it an ideal cofactor for redox enzymes, but also pose special experimental problems, which are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crichton RR, Pierre J-L (2001) Old iron, young copper: from Mars to Venus. Biometals 14:99–112

    Article  CAS  PubMed  Google Scholar 

  2. Fraústo da Silva JJR, Williams RJP (1993) The biological chemistry of the elements. Oxford University Press, Oxford

    Google Scholar 

  3. Herrick J, Sclavi B (2007) Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol 63:22–34

    Article  CAS  PubMed  Google Scholar 

  4. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  5. Jordan A, Reichard P (1998) Ribonucleotide reductases. Annu Rev Biochem 67:71–98

    Article  CAS  PubMed  Google Scholar 

  6. Dupont CL, Butcher A, Valas RE et al (2010) History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc Natl Acad Sci USA 107:10567–10572

    Article  PubMed  Google Scholar 

  7. Baureder M, Reimann R, Hederstedt L (2012) Contribution of catalase to hydrogen peroxide resistance in Enterococcus faecalis. FEMS Microbiol Lett 331:160–164

    Article  CAS  PubMed  Google Scholar 

  8. Ridge PG, Zhang Y, Gladyshev VN (2008) Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS ONE 3:e1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185

    Article  CAS  PubMed  Google Scholar 

  10. Dupont CL, Grass G, Rensing C (2011) Copper toxicity and the origin of bacterial resistance-new insights and applications. Metallomics 3:1109–1118

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Gladyshev VN (2010) General trends in trace element utilization revealed by comparative genomic analyses of Co, Cu, Mo, Ni and Se. J Biol Chem 285:3393–3405

    Article  CAS  PubMed  Google Scholar 

  12. Gladyshev VN, Zhang Y (2013) Comparative genomics analysis of the metallomes. In: Banci L (ed) Metallomics and the Cell. Springer, Heidelberg

    Google Scholar 

  13. Irving H, Williams RJP (1953) The stability of transition-metal complexes. J Chem Soc 1953:3192–3210

    Article  Google Scholar 

  14. Pearson RG (1968) Hard and soft acid and bases, HSAB, part I. J Chem Educ 45:581–587

    Article  CAS  Google Scholar 

  15. Hans M, Mathews S, Mücklich F et al (2016) Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases 11:018902-1–018902-8

    Article  CAS  Google Scholar 

  16. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  PubMed  Google Scholar 

  17. Saier MH Jr, Tam R, Reizer A et al (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11:841–847

    Article  CAS  PubMed  Google Scholar 

  18. Changela A, Chen K, Xue Y et al (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387

    Article  CAS  PubMed  Google Scholar 

  19. Masip L, Veeravalli K, Georgiou G (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8:753–762

    Article  CAS  PubMed  Google Scholar 

  20. Fahey RC, Brown WC, Adams WB et al (1978) Occurrence of glutathione in bacteria. J Bacteriol 133:1126–1129

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Mana-Capelli S, Mandal AK, Arguello JM (2003) Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain. J Biol Chem 278:40534–40541

    Article  CAS  PubMed  Google Scholar 

  22. Hemmerich P, Sigwart C (1963) Cu(CH3CN) +2 , ein Mittel zum Studium homogener Reaktionen des einwertigen Kupfers in wässriger Lösung. Experientia 19:488–489

    Article  CAS  Google Scholar 

  23. Bissig K-D, Voegelin TC, Solioz M (2001) Tetrathiomolybdate inhibition of the Enterococcus hirae CopB copper ATPase. FEBS Lett 507:367–370

    Article  CAS  PubMed  Google Scholar 

  24. Brewer GJ, Askari F, Dick RB et al (2009) Treatment of Wilson’s disease with tetrathiomolybdate: V. Control of free copper by tetrathiomolybdate and a comparison with trientine. Transl Res 154:70–77

    Article  CAS  PubMed  Google Scholar 

  25. Bell PF, Chen Y, Potts WE et al (1991) A reevaluation of the Fe(III), Ca(II), Zn(II), and proton formation constants of 4,7-diphenyl-1,10-phenanthrolinedisulfonate. Biol Trace Elem Res 30:125–144

    Article  CAS  PubMed  Google Scholar 

  26. McPhail DB, Goodman BA (1984) Tris buffer—a case for caution in its use in copper-containing systems. Biochem J 221:559–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Solioz .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Solioz, M. (2018). Copper—A Modern Bioelement. In: Copper and Bacteria. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-94439-5_1

Download citation

Publish with us

Policies and ethics