Skip to main content

A Proof of the Hall-Paige Conjecture

  • Chapter
  • First Online:
Orthogonal Latin Squares Based on Groups

Part of the book series: Developments in Mathematics ((DEVM,volume 57))

  • 693 Accesses

Abstract

In 2009 Wilcox proved that any minimal counterexample to the Hall-Paige conjecture must be a finite nonabelian simple group. He further proved that no finite simple group of Lie type, with the possible exception of2F4(2), the Tits group, could be a minimal counterexample to this conjecture. As the alternating groups were proved to be admissible in 1955 by Hall and Paige, and the Mathieu groups were proved admissible in 1993 by Dalla Volta and Gavioli, this left 22 possible minimal counterexamples to the Hall-Paige conjecture. Building on Wilcox’s work, Evans reduced the number of possible minimal counterexamples to the Hall-Paige conjecture to just one; Janko’s fourth group, J4. This last group was shown not to be a minimal counterexample by Bray, thus completing a proof of the conjecture. In this chapter we will cover proofs that finite nonabelian simple groups are admissible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aschbacher, M.: Lectures delivered at NSA (1990)

    Google Scholar 

  2. Aschbacher, M.: Sporadic groups. Cambridge Tracts in Mathematics 104, Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Aschbacher, M.: Finite group theory. Cambridge Studies in Advanced Mathematics 10, 2nd edn., Cambridge University Press, Cambridge (2000)

    Google Scholar 

  4. Bray, J.N.: personal communication.

    Google Scholar 

  5. Breuer, T., Müller, J.: Character tables of endomorphism rings of multiplicity-free permutation modules in GAP. http://www.math.rwth-aachen.de/~Juergen.Mueller/mferctbl/mferctbl.html

  6. Carter, R.W.: Simple Groups of Lie Type. Wiley Classics Lib., John Wiley & Sons Ltd., New York (1972)

    Google Scholar 

  7. Chevalley, C.: Sur certains groupes simples. Tohoku Math. J. (2) 7, 14–66 (1955)

    Google Scholar 

  8. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of finite groups. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  9. Dalla Volta, F., Gavioli, N.: Complete mappings in some linear and projective groups. Arch. Math. (Basel) 61, 111–118 (1993)

    Google Scholar 

  10. Evans, A.B.: The admissibility of sporadic simple groups. J. Algebra 321, 105–116 (2009)

    Article  MathSciNet  Google Scholar 

  11. Gorenstein, D.: Finite groups. Harper & Row, New York (1968)

    MATH  Google Scholar 

  12. Hall, M., Paige, L.J.: Complete mappings of finite groups. Pacific J. Math. 5, 541–549 (1955)

    Article  MathSciNet  Google Scholar 

  13. Michler, G.O.: Theory of finite simple groups. Cambridge University Press, Cambridge (2006).

    MATH  Google Scholar 

  14. Moghaddamfar, A.R., Zokayi, A.R.: On the admissibility of finite groups. Southeast Asian Bull. Math. 33, no. 3, 485–489 (2009).

    MathSciNet  MATH  Google Scholar 

  15. Praeger, C.E., Soicher, L.H.: Low rank representations and graphs for sporadic groups. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  16. Pula, K.: Products of all elements in a loop and a framework for non-associative analogues of the Hall-Paige conjecture. Electron. J. Combin. 16, no. 1, Research Paper 60, 15 pp. (2009).

    Google Scholar 

  17. Steinberg, R.: Variations on a theme of Chevalley. Pacific J. Math. 9, 875–891 (1959).

    Article  MathSciNet  Google Scholar 

  18. Vaughan-Lee, M., Wanless, I.M.: Latin squares and the Hall-Paige conjecture. Bull. Lond. Math. Soc. 35, 191–195 (2003).

    Article  MathSciNet  Google Scholar 

  19. Wilcox, S.: Reduction of the Hall-Paige conjecture to sporadic simple groups. J. Algebra 321, 1407–1428 (2009)

    Article  MathSciNet  Google Scholar 

  20. Wilson, R., Walsh, P., Tripp, J., Suleiman, I., Parker, R., Norton, S., Nickerson, S., Linton, S., Bray, J., Abbott, R.: Atlas of finite group representations - Version 3. http://brauer.maths.qmul.ac.uk/Atlas/v3/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evans, A.B. (2018). A Proof of the Hall-Paige Conjecture. In: Orthogonal Latin Squares Based on Groups. Developments in Mathematics, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-94430-2_7

Download citation

Publish with us

Policies and ethics