Advertisement

Robust and Incremental Pedestrian Path Network Generation on OpenStreetMap for Safe Route Finding

  • Sebastian Ritterbusch
  • Harald Kucharek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10897)

Abstract

Automatic route finding is an indispensable service in today’s life. As so far, route finding is most used for car navigation, available map data is largely missing information specific to the needs of pedestrians. This is much worse for mobility impaired pedestrians, that need to find safer routes avoiding dangerous crossings. This paper introduces a robust, incremental, and transparent extension of the OpenStreetMap way network to enable the analysis for safe route finding, and its application to safer route finding for pedestrians with visual disabilities.

Keywords

Pedestrian Route finding OpenStreetMap Blind mobility 

References

  1. 1.
    Völkel, T., Kühn, R., Weber, G.: Mobility impaired pedestrians are not cars: requirements for the annotation of geographical data. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1085–1092. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70540-6_163CrossRefGoogle Scholar
  2. 2.
    Völkel, T., Weber, G.: RouteCheckr: personalized multicriteria routing for mobility impaired pedestrians. In: Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 185–192. ACM (2008)Google Scholar
  3. 3.
    Müller, A., Neis, P., Zipf, A.: Ein Routenplaner für Rollstuhlfahrer auf der Basis von OpenStreetMap-Daten. Konzeption, Realisierung und Perspektive n. AGIT (2010)Google Scholar
  4. 4.
    Franke, D., Dzafic, D., Baumeister, D., Kowalewski, S.: Energieeffizientes Routing für Elektrorollstühle. In: 13. Aachener Kolloquium Mobilität und Stadt (AMUS/ACMOTE), Aachen, pp. 65–67 (2012)Google Scholar
  5. 5.
    Schmitz, B., Ertl, T.: Rule-based transformation of map data. In: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 578–583. IEEE (2012)Google Scholar
  6. 6.
    Schmitz, B., Ertl, T.: Individualized route planning and guidance based on map content transformations. In: Miesenberger, K., Fels, D., Archambault, D., Peňáz, P., Zagler, W. (eds.) ICCHP 2014. LNCS, vol. 8548, pp. 120–127. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08599-9_19CrossRefGoogle Scholar
  7. 7.
    Naumann, S., Kovalyov, M.Y.: Pedestrian route search based on OpenStreetMap. In: Sierpiński, G. (ed.) Intelligent Transport Systems and Travel Behaviour. AISC, vol. 505, pp. 87–96. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-43991-4_8CrossRefGoogle Scholar
  8. 8.
    Bolten, N., Mukherjee, S., Sipeeva, V., Tanweer, A., Caspi, A.: A pedestrian-centered data approach for equitable access to urban infrastructure environments. IBM J. Res. Dev. 61(6), 10–1 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.iXpoint Informationssysteme GmbHEttlingenGermany
  2. 2.VWA-HochschuleStuttgartGermany

Personalised recommendations