Towards Haptic Surface Devices with Force Feedback for Visually Impaired People

  • Simon GayEmail author
  • Marc-Aurèle Rivière
  • Edwige Pissaloux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10897)


This paper presents a new haptic surface tablet that can provide force feedback to the user. Force feedback means that the device can react to the user’s movements and apply a force against or in-line with these movements, according to the tactile properties of a displayed image. The device consists of a frame attached to a tactile tablet that generates a force feedback to user’s finger when exploring the surface, providing haptic informations about the displayed image. The experimental results suggest the relevance of this tablet as an assistive device for visually impaired people in perceiving and understanding the content of a displayed image. Several potential applications are briefly presented.


Haptic accessibility to 2D images Assistive device for visually impaired Force feedback Haptic surface 


  1. 1.
    Ancet, P., Chottin, M., Pissaloux, E., Romeo, K., Rivière, M.-A., Gay, S.L.: Toucher ou être touché: les vertus inclusives du movement et de la sensibilité tactile. Workshop, Défi AUTON, CNRS, Paris (2018)Google Scholar
  2. 2.
    Prescher, D., Borschein, J., Köhlmann, W., Weber, G.: Touching graphical applications: bimanual tactile interaction on the HyperBraille pin-matrix display. Univ. Access Inf. Soc. 17(2), 391–409 (2018)CrossRefGoogle Scholar
  3. 3.
    Zarate, J.J., Gudozhnik, O., Ruch, A.S., Shea, H.: Keep in touch: portable haptic display with 192 high speed taxels. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 349–352 (2017)Google Scholar
  4. 4.
    Simeonov, S., Simeonova, N.: Graphical interface for visually impaired people based on bi-stable solenoids. Int. J. Soft Comput. Softw. Eng. 3, 128–131 (2014)Google Scholar
  5. 5.
    Leithinger, D., Follmer, S., Olwal, A., Ishii, H.: Shape displays: spatial interaction with dynamic physical form. IEEE Comput. Graph. Appl. 5, 5–11 (2015)CrossRefGoogle Scholar
  6. 6.
    Velázquez, R., Pissaloux, E., Hafez, M., Szewczyk, J.: Tactile rendering with shape memory alloy pin-matrix. IEEE Trans. Instrum. Meas. 57(5), 1051–1057 (2008)CrossRefGoogle Scholar
  7. 7. APH - graphiti graphics display (2016)., Accessed 31 Jan 2018
  8. 8. Tactonom - the tactile graphics display (2017). Accessed 31 Jan 2018
  9. 9.
    Besse, N., Rosset, S., Zarate, J.J., Shea, H.: Flexible active skin, large reconfigurable arrays of individually addressed shape memory polymer actuators. In: Advanced Material Technologies, vol. 2, no. 10 (2017)CrossRefGoogle Scholar
  10. 10.
    Maucher, T., Meier, K., Schemmel, J.: An interactive tactile graphics display. In: Proceedings of the 6th International Symposium on Signal Processing and its Applications, pp. 190–193 (2001)Google Scholar
  11. 11.
    Goldish, L.H., Taylor, H.E.: The optacon: a valuable device for blind persons. New Outlook Blind 68(2), 49–56 (1974)Google Scholar
  12. 12.
    Biet, M.: Conception et contrôle d’actionneurs électro-actifs dédiés à la stimulation tactile. Ph.D., Université Lille1 (2008)Google Scholar
  13. 13.
    Bernard, F.: Conception, fabrication et caractérisation d’une dalle haptique à base de micro-actionneurs piézoélectriques. Ph.D., Université Grenoble (2016)Google Scholar
  14. 14.
    Bau, O., Poupyrev, I., Israr, A., Harrison, C., TeslaTouch: electrovibration for touch surfaces. In: ACM Symposium on User Interface Software and Technology (2010)Google Scholar
  15. 15.
    Maurel, F.: La TactiNET. 27ème conférence francophone sur l’Interaction Homme-Machine, pp. d09 (2015)Google Scholar
  16. 16.
    Koo, I., Jung, K., Koo, J., Nam, J.-D., Lee, Y., Choi, H.: Development of soft-actuator-based wearable tactile display. IEEE Trans. Rob. 24, 549–558 (2008)CrossRefGoogle Scholar
  17. 17.
    Lecolinet, E., Mouret, G.: TACTIBALL, TACTIPEN, TACTITAB ou comment “toucher du doigt” les données de son ordinateur. In: The Proceedings of IHM 2005. ACM Press (2005)Google Scholar
  18. 18.
    Kyung, K.-U., Lee, J.-Y., Park, J.: Haptic stylus and empirical studies on braille, button, and texture display. J. Biomed. Biotechnol. 2008, 327–334 (2008)CrossRefGoogle Scholar
  19. 19.
    Wintergerst, G., Jagodzinski, R., Hemmert, F., Müller, A., Joost, G.: Reflective haptics: enhancing stylus-based interactions on touch screens. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds.) EuroHaptics 2010. LNCS, vol. 6191, pp. 360–366. Springer, Heidelberg (2010). Scholar
  20. 20.
    Gleeson, B.T., Stewart, C.A., Provancher, W.R.: Improved tactile shear feedback: tactor design and an aperture-based restraint. IEEE Trans. Haptics 4, 253–262 (2011)CrossRefGoogle Scholar
  21. 21.
    Guinan, A.L., Montandon, M.N., Caswell, N.A., Provancher, W.R.: Skin stretch feedback for gaming environments. In: IEEE Symposium on Haptic Audio-Visual Environments and Games (2012)Google Scholar
  22. 22.
    Wang, Q., Hayward, V.: Compact, portable, modular, high-performance, distributed tactile transducer device based on lateral skin deformation. In: Proceedings of the 14th Symposium on Haptic Interfaces For Virtual Environment and Teleoperator Systems IEEE VR, 67–72 (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LITISUniversité de Rouen NormandieMont-Saint-AignanFrance

Personalised recommendations