TactiBelt: Integrating Spatial Cognition and Mobility Theories into the Design of a Novel Orientation and Mobility Assistive Device for the Blind

  • Marc-Aurèle RiviereEmail author
  • Simon Gay
  • Edwige Pissaloux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10897)


The aim of this paper is to introduce a novel functional design for an indoor and outdoor mobility assistive device for the visually impaired, based on the theoretical frameworks of mobility and spatial cognition. The originality of the proposed approach comes from the integration of two main aspects of navigation, locomotion and wayfinding. The cognitive theories which underpin the design of the proposed sensory substitution device, called TactiBelt, are identified and discussed in the framework of spatial knowledge acquisition.

The paper is organized as follows: Sect. 1 gives a brief overview of the sensory substitution framework, while Sects. 2 and 3 introduce the importance of navigation and spatial cognition models for the design of mobility aids. Section 4 details the functional design of the Tactibelt.


Mobility aid Sensory substitution Spatial cognition Blindness 


  1. 1.
    Bach-y-Rita, P., Collins, C.C., Saunders, F.A., White, B., Scadden, L.: Vision substitution by tactile image projection. Nature 221(5184), 963–964 (1969)CrossRefGoogle Scholar
  2. 2.
    Auvray, M., Philipona, D., O’Regan, J.K., Spence, C.: The perception of space and form recognition in a simulated environment: the case of minimalist sensory-substitution devices. Perception 36(12), 1736–1751 (2007)CrossRefGoogle Scholar
  3. 3.
    Kärcher, S.M., Fenzlaff, S., Hartmann, D., Nagel, S.K., König, P.: Sensory augmentation for the blind. Front. Hum. Neurosci. 6, 37 (2012)CrossRefGoogle Scholar
  4. 4.
    Kristjánsson, Á., et al.: Designing sensory-substitution devices: principles, pitfalls and potentials. Restor. Neurol. Neurosci. 34(5), 769–787 (2016)Google Scholar
  5. 5.
    Spence, C.: The skin as a medium for sensory substitution. Multisensory Res. 27(5–6), 293–312 (2014)CrossRefGoogle Scholar
  6. 6.
    Chebat, D.-R., Harrar, V., Kupers, R., Maidenbaum, S., Amedi, A., Ptito, M.: Sensory substitution and the neural correlates of navigation in blindness. In: Pissaloux, E., Velázquez, R. (eds.) Mobility of Visually Impaired People, pp. 167–200. Springer, Cham (2018). Scholar
  7. 7.
    Pissaloux, E.E., Velazquez, R., Maingreaud, F.: A new framework for cognitive mobility of visually impaired users in using tactile device. IEEE Trans. Hum.-Mach. Syst. 47(6), 1040–1051 (2017)CrossRefGoogle Scholar
  8. 8.
    Loomis, J.M., Klatzky, R.L., Giudice, N.A.: Representing 3D space in working memory: spatial images from vision, hearing, touch, and language. In: Lacey, S., Lawson, R. (eds.) Multisensory Imagery, pp. 131–155. Springer, New York (2013). Scholar
  9. 9.
    Montello, D.R.: Navigation. In: Shah, P., Miyake, A. (eds.) The Cambridge Handbook of Visuospatial Thinking Cambridge, pp. 257–294. Cambridge University Press (2005)Google Scholar
  10. 10.
    Waller, D., Nadel, L. (eds.): Handbook of Spatial Cognition. American Psychological Association, Washington, D.C. (2013)Google Scholar
  11. 11.
    Meers, S., Ward, K.: A substitute vision system for providing 3D perception and GPS navigation via electro-tactile stimulation (2005)Google Scholar
  12. 12.
    Srikulwong, M., O’Neill, E.: A comparative study of tactile representation techniques for landmarks on a wearable device, p. 2029 (2011)Google Scholar
  13. 13.
    Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81–97 (1956)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Rouen Normandy, LITISMont-Saint-AignanFrance

Personalised recommendations