Skip to main content

Exploration of Human Activities Using Sensing Data via Deep Embedded Determination

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10874))

Abstract

Clustering analysis is one of promising techniques of uncovering different types of human activities from a set of ubiquitous sensing data in an unsupervised manner. Previous work proposes deep clustering to learn feature representations that favor clustering tasks. However, these algorithms assume that the number of clusters is known a priori, which is often impractical in the real world. Determining the number of clusters from high dimensional data is challenging. On the other hand, the lack of the number of clusters make it difficult to extract low dimensional features appropriate for clustering. In this paper, we propose Deep Embedding Determination (DED), a method that can determine the number of clusters and extract appropriate features for the high dimensional real data. Our experimental evaluation on different datasets shows the effectiveness of DED, and the excellent performance of DED in exploring the human activities using sensing data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478–487 (2016)

    Google Scholar 

  2. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedding clustering with local structure preservation. In: International Joint Conference and Artificial Intelligence (2017)

    Google Scholar 

  3. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding: an unsupervised and generative approach to clustering. In: International Joint Conference and Artificial Intelligence (2017)

    Google Scholar 

  4. Dizaji, K.G., Herandi, A., Huang, H.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: ICCV (2017)

    Google Scholar 

  5. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Hoboken (1990)

    Book  Google Scholar 

  6. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 63, 411–423 (2001)

    Article  MathSciNet  Google Scholar 

  7. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  8. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  9. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344, 1492–1496 (2014)

    Article  Google Scholar 

  10. LeCun, Y., Cortes, C., Burges, C.J.: MNIST handwritten digit database. AT&T Labs (2010)

    Google Scholar 

  11. Thoma, M.: The HASYv2 dataset. arXiv preprint arXiv:1701.08380 (2017)

  12. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16, 550–554 (1994)

    Article  Google Scholar 

  13. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013 (2013)

    Google Scholar 

  14. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  15. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  16. Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.: Learning deep representations for graph clustering. In: AAAI, pp. 1293–1299 (2014)

    Google Scholar 

  17. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5147–5156 (2016)

    Google Scholar 

  18. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  19. Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  20. Steinbach, M., Ertöz, L., Kumar, V.: The challenges of clustering high dimensional data. In: Wille, L.T. (ed.) New Directions in Statistical Physics, pp. 273–309. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-08968-2_16

    Chapter  Google Scholar 

  21. Chollet, F., et al.: Keras: deep learning library for Theano and TensorFlow (2015). https://keras.io/k

  22. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  24. Hornik, K.: Approximation capabilities of multilayer feedforward networks. In: Neural Networks, vol. 4, pp. 251–257. Elsevier (1991)

    Article  MathSciNet  Google Scholar 

  25. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China 2018YFB1003202 and the National Natural Science Foundation of China (Project no. 61773392, 61702539 and 61672528).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to En Zhu or Jianping Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Zhu, E., Liu, Q., Chen, Y., Yin, J. (2018). Exploration of Human Activities Using Sensing Data via Deep Embedded Determination. In: Chellappan, S., Cheng, W., Li, W. (eds) Wireless Algorithms, Systems, and Applications. WASA 2018. Lecture Notes in Computer Science(), vol 10874. Springer, Cham. https://doi.org/10.1007/978-3-319-94268-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94268-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94267-4

  • Online ISBN: 978-3-319-94268-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics