Skip to main content

Inferring Mammal Dietary Ecology from Dental Morphology

  • Chapter
  • First Online:
Methods in Paleoecology

Abstract

The teeth of mammals are the key interface between food and animal – where the rubber meets the road. Mammals generally use their teeth for mechanical processing, thereby facilitating and increasing rates of ingestion, digestion and fermentation. The various foods eaten by mammals respond to bite forces in different ways: some foods fracture easily, while others resist cracks propagating through them. In addition, some foods must be broken down to small pieces for effective energy and nutrient extraction; others merely need to be small enough to swallow. The most effective tooth morphology therefore varies with the mechanical properties of the food. Tooth shape can help to determine the typical food sources consumed by mammals at a given fossil locality, which in turn informs the broad environmental conditions and community structure once present at the site. In this chapter, we examine the ways in which mammalian tooth morphology can serve as an indicator of diet and thus past environments by examining the materials science of foods and the functional morphology of mammal teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abler, W. L. (1992). The serrated teeth of tyrannosaurid dinosaurs, and biting structures in other animals. Paleobiology, 18, 161–183.

    Article  Google Scholar 

  • Anderson, P. S. L., & LaBarbera, M. (2008). Functional consequences of tooth design: effects of blade shape on energetics of cutting. Journal of Experimental Biology, 211, 3619–3626.

    Article  Google Scholar 

  • Barr, W. A. (2018). Ecomorphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 337–347). Cham: Springer.

    Google Scholar 

  • Benazzi, S., Kullmer, O., Grosse, I. R., & Weber, G. W. (2011). Using occlusal wear information and finite element analysis to investigate stress distributions in human molars. Journal of Anatomy, 219, 259–272.

    Article  Google Scholar 

  • Benazzi, S., Kullmer, O., Grosse, I. R., & Weber, G. W. (2012). Brief communication: comparing loading scenarios in lower first molar supporting bone structure using 3D finite element analysis. American Journal of Physical Anthropology, 147, 128–134.

    Article  Google Scholar 

  • Benazzi, S., Grosse, I. R., Gruppioni, G., Weber, G. W., & Kullmer, O. (2014). Comparison of occlusal loading conditions in a lower second premolar using three-dimensional finite element analysis. Clinical Oral Investigations, 18, 369–375.

    Article  Google Scholar 

  • Berthaume, M. A. (2014). Tooth cusp sharpness as a dietary correlate in great apes. American Journal of Physical Anthropology, 153, 226–235.

    Article  Google Scholar 

  • Berthaume, M. A. (2016). Food mechanical properties and dietary ecology. American Journal of Physical Anthropology, 159, 79–104.

    Article  Google Scholar 

  • Berthaume, M. A., Grosse, I. R., Patel, N. D., Strait, D. S., Wood, S., & Richmond, B. G. (2010). The effect of early hominin occlusal morphology on the fracturing of hard food items. Anatomical Record, 293, 594–606.

    Article  Google Scholar 

  • Berthaume, M. A., Dumont, E. R., Godfrey, L. R., & Grosse, I. R. (2014). The effects of relative food item size on optimal tooth cusp sharpness during brittle food item processing. Journal of the Royal Society Interface, 11, 20140965.

    Google Scholar 

  • Biknevicius, A. R. (1986). Dental function and diet in the Carpolestidae (Primates, Plesiadapiformes). American Journal of Physical Anthropology, 71, 157–171.

    Article  Google Scholar 

  • Bock, W. J., & Wahlert, G. V. (1965). Adaptation and the form-function complex. Evolution, 19, 269–299.

    Google Scholar 

  • Boyer, D. M. (2008). Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. Journal of Human Evolution, 55, 1118–1137.

    Article  Google Scholar 

  • Bunn, J. M., Boyer, D. M., Lipman, Y., St Clair, E. M., Jernvall, J., & Daubechies, I. (2011). Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination. American Journal of Physical Anthropology, 145, 247–261.

    Article  Google Scholar 

  • Callister, W. D., & Rethwisch, D. G. (2014). Materials science and engineering: An introduction (9th ed.). Hoboken, NJ: Wiley.

    Google Scholar 

  • Candela, A. M., Cassini, G. H., & Nasif, N. L. (2013). Fractal dimension and cheek teeth crown complexity in the giant rodent Eumegamys paranensis. Lethaia, 46, 369–377.

    Article  Google Scholar 

  • Chemisquy, M. A., Prevosti, F. J., Martin, G., & Flores, D. A. (2015). Evolution of molar shape in didelphid marsupials (Marsupialia: Didelphidae): analysis of the influence of ecological factors and phylogenetic legacy. Zoological Journal of the Linnean Society, 173, 217–235.

    Article  Google Scholar 

  • Crofts, S. B., & Summers, A. P. (2014). How to best smash a snail: the effect of tooth shape on crushing load. Journal of the Royal Society Interface, 11, 20131053.

    Google Scholar 

  • Crusafont-Pairó, M., & Truyols-Santonja, J. (1956). A biometric study of the evolution of fissiped carnivores. Evolution, 10, 314–332.

    Article  Google Scholar 

  • Curran, S C. (2018). Three-dimensional geometric morphometrics in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 317–335). Cham: Springer.

    Google Scholar 

  • Davis, M., & Pineda Munoz, S. (2016). The temporal scale of diet and dietary proxies. Ecology and Evolution, 6, 1883–1897.

    Article  Google Scholar 

  • Dumont, E. R., Strait, S. G., & Friscia, A. R. (2000). Abderitid marsupials from the Miocene of Patagonia: an assessment of form, function, and evolution. Journal of Paleontology, 74, 1161–1172.

    Article  Google Scholar 

  • Evans, A. R. (2005). Connecting morphology, function and tooth wear in microchiropterans. Biological Journal of the Linnean Society, 85, 81–96.

    Article  Google Scholar 

  • Evans, A. R. (2013). Shape descriptors as ecometrics in dental ecology. Hystrix: The Italian Journal of Mammalogy, 24, 133–140.

    Google Scholar 

  • Evans, A. R., & Sanson, G. D. (1998). The effect of tooth shape on the breakdown of insects. Journal of Zoology, 246, 391–400.

    Article  Google Scholar 

  • Evans, A. R., & Sanson, G. D. (2003). The tooth of perfection: functional and spatial constraints on mammalian tooth shape. Biological Journal of the Linnean Society, 78, 173–191.

    Article  Google Scholar 

  • Evans, A. R., & Sanson, G. D. (2005). Correspondence between tooth shape and dietary biomechanical properties in insectivorous microchiropterans. Evolutionary Ecology Research, 7, 453–478.

    Google Scholar 

  • Evans, A. R., Harper, I. S., & Sanson, G. D. (2001). Confocal imaging, visualization and 3-D surface measurement of small mammalian teeth. Journal of Microscopy, 204, 108–118.

    Article  Google Scholar 

  • Evans, A. R., Fortelius, M., Jernvall, J., & Eronen, J. T. (2006). Dental ecomorphology of extant European carnivorans. In E. Żądzińska (Ed.), Current trends in dental morphology research: Full refereed papers from 13th International Symposium on Dental Morphology (pp. 223–232, Vol. 3). Łódź: University of Łódź Press.

    Google Scholar 

  • Evans, A. R., Wilson, G. P., Fortelius, M., & Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.

    Article  Google Scholar 

  • Famoso, N. A., & Davis, E. B. (2016). On the relationship between enamel band complexity and occlusal surface area in Equids (Mammalia, Perissodactyla). PeerJ, 4, e2181.

    Google Scholar 

  • Famoso, N. A., Feranec, R. S., & Davis, E. B. (2013). Occlusal enamel complexity and its implications for lophodonty, hypsodonty, body mass, and diet in extinct and extant ungulates. Palaeogeography, Palaeoclimatology, Palaeoecology, 387, 211–216.

    Article  Google Scholar 

  • Famoso, N. A., Davis, E. B., Feranec, R. S., Hopkins, S. S. B., & Price, S. A. (2016). Are hypsodonty and occlusal enamel complexity evolutionarily correlated in ungulates? Journal of Mammalian Evolution, 23, 43–47.

    Article  Google Scholar 

  • Fortelius, M. (1985). Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zoologica Fennica, 180, 1–76.

    Google Scholar 

  • Freeman, P. W. (1988). Frugivorous and animalivorous bats (Microchiroptera): dental and cranial adaptations. Biological Journal of the Linnean Society, 33, 249–272.

    Article  Google Scholar 

  • Freeman, P. W. (1992). Canine teeth of bats (Microchiroptera): size, shape and role in crack propagation. Biological Journal of the Linnean Society, 45, 97–115.

    Article  Google Scholar 

  • Freeman, P. W., & Lemen, C. (2006). Puncturing ability of idealized canine teeth: edged and non-edged shanks. Journal of Zoology, 269, 51–56.

    Article  Google Scholar 

  • Green, J. L., & Croft, D. A. (2018). Using dental mesowear and microwear for dietary inference: a review of current techniques and applications. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 53–73). Cham: Springer.

    Google Scholar 

  • Gregory, W. K. (1920). On the structure and relations of Notharctus, an American Eocene primate. Memoirs of the American Museum of Natural History, New Series, 3, 49–243.

    Google Scholar 

  • Gregory, W. K. (1922). The origin and evolution of the human dentition. Baltimore: Williams & Wilkins Company.

    Google Scholar 

  • Hardie, R. P., & Gaye, R. K. (1930). Physica (Vol. v2, The works of Aristotle). Oxford: Clarendon Press.

    Google Scholar 

  • Hopkins, S. S. B. (2018). Estimation of body size in fossil mammals. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 7–22). Cham: Springer.

    Google Scholar 

  • Hunter, J. (1771–1803 [1865 post.]). The natural history of the human teeth. London: Robert Hardwicke.

    Google Scholar 

  • Jernvall, J. (1995). Mammalian molar cusp patterns: developmental mechanisms of diversity. Acta Zoologica Fennica, 198, 1–61.

    Google Scholar 

  • Jernvall, J., Hunter, J. P., & Fortelius, M. (1996). Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science, 274, 1489–1492.

    Article  Google Scholar 

  • Jernvall, J., & Selänne, L. (1999). Laser confocal microscopy and geographic information systems in the study of dental morphology. Palaeontologia Electronica, 2.1.3A, 12 pp.

    Google Scholar 

  • Kay, R. F. (1975). The functional adaptations of primate molar teeth. American Journal of Physical Anthropology, 43, 195–215.

    Article  Google Scholar 

  • Kay, R. F. (1978). Molar structure and diet in extant Cercopithecidae. In P. M. Butler & K. A. Joysey (Eds.), Development, function, and evolution of teeth (pp. 309–339). London: Academic Press.

    Google Scholar 

  • Kay, R. F., & Hiiemae, K. M. (1974). Jaw movement and tooth use in recent and fossil primates. American Journal of Physical Anthropology, 40, 227–256.

    Article  Google Scholar 

  • Kieser, J. A. (1990). Human adult odontometrics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • King, S. J., Arrigo-Nelson, S. J., Pochron, S. T., Semprebon, G. M., Godfrey, L. R., Wright, P. C., et al. (2005). Dental senescence in a long-lived primate links infant survival to rainfall. Proceedings of the National Academy of Sciences, USA, 102, 16579–16583.

    Article  Google Scholar 

  • Klukkert, Z. S., Teaford, M. F., & Ungar, P. S. (2012). A dental topographic analysis of chimpanzees. American Journal of Physical Anthropology, 148, 276–284.

    Article  Google Scholar 

  • Krause, D. W. (1982). Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus. Paleobiology, 8, 265–281.

    Article  Google Scholar 

  • Laws, R. M. (1968). Dentition and ageing of the hippopotamus. East African Wildlife Journal, 6, 19–52.

    Article  Google Scholar 

  • Leakey, L. S. B. (1959). A new fossil skull from Olduvai. Nature, 184, 491–493.

    Article  Google Scholar 

  • Liu, L., Puolamaki, K., Eronen, J. T., Ataabadi, M. M., Hernesniemi, E., & Fortelius, M. (2012). Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and present. Proceedings of the Royal Society B, 279, 2793–2799.

    Article  Google Scholar 

  • Logan, M., & Sanson, G. D. (2002). The effects of tooth wear on the activity patterns of free-ranging koalas (Phascolarctos cinereus Goldfuss). Australian Journal of Zoology, 50, 281–292.

    Article  Google Scholar 

  • Lucas, P. W. (1979). The dental-dietary adaptations of mammals. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1979, 486–512.

    Google Scholar 

  • Lucas, P. W. (1982). Basic principles of tooth design. In B. Kurtén (Ed.), Teeth: Form, function and evolution (pp. 154–162). New York: Columbia University Press.

    Google Scholar 

  • Lucas, P. W., & Luke, D. A. (1984). Chewing it over: basic principles of food breakdown. In D. J. Chivers, B. A. Wood, & A. Bilsborough (Eds.), Food acquisition and processing in primates (pp. 283–301). New York: Plenum Press.

    Chapter  Google Scholar 

  • Macho, G. A., & Spears, I. R. (1999). Effects of loading on the biomechanical behavior of molars of Homo, Pan, and Pongo. American Journal of Physical Anthropology, 109, 211–227.

    Article  Google Scholar 

  • Osborn, J. W., & Lumsden, A. G. S. (1978). An alternative to “thegosis” and a re-examination of the ways in which mammalian molars work. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 156, 371–392.

    Google Scholar 

  • Pampush, J. D., Winchester, J. M., Morse, P. E., Vining, A. Q., Boyer, D. M., & Kay, R. F. (2016). Introducing molaR: a new R package for quantitative topographic analysis of teeth (and other topographic surfaces). Journal of Mammalian Evolution, 23, 397–412.

    Article  Google Scholar 

  • Pineda-Munoz, S., Lazagabaster, I. A., Evans, A. R., & Alroy, J. (2017). Inferring diet from dental morphology in terrestrial mammals. Methods in Ecology and Evolution, 8, 481–491.

    Article  Google Scholar 

  • Pollock, T. I. (2016). Blade Runner: Revealing the function and dietary implications of blade-like serrated teeth in mammals. BSc (Hons) Thesis, Monash University.

    Google Scholar 

  • Rayfield, E. J. (2007). Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annual Review of Earth and Planetary Sciences, 35, 541–576.

    Article  Google Scholar 

  • Reed, D. N. O. (1997). Contour mapping as a new method for interpreting diet from tooth morphology. American Journal of Physical Anthropology, Suppl, 24, 194.

    Google Scholar 

  • Rensberger, J. M. (1973). An occlusal model for mastication and dental wear in herbivorous mammals. Journal of Paleontology, 47, 515–528.

    Google Scholar 

  • Rosenberger, A. L., & Kinzey, W. G. (1976). Functional patterns of molar occlusion in platyrrhine primates. American Journal of Physical Anthropology, 45, 281–298.

    Article  Google Scholar 

  • Sanson, G. (2006). The biomechanics of browsing and grazing. American Journal of Botany, 93, 1531–1545.

    Article  Google Scholar 

  • Schmidt-Kittler, N. (1984). Pattern analysis of occlusal surfaces in hypsodont herbivores and its bearing on morpho-functional studies. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen series B: palaeontology, geology, physics, chemistry, anthropology, 87, 453–480.

    Google Scholar 

  • Simpson, G. G. (1933a). Paleobiology of Jurassic mammals. Paleobiologica, 5, 127–158.

    Google Scholar 

  • Simpson, G. G. (1933b). The “plagiaulacoid” type of mammalian dentition. A study of convergence. Journal of Mammalogy, 14, 97–107.

    Article  Google Scholar 

  • Skamniotis, C. G., Patel, Y., Charalambides, M. N., & Elliott, M. (2016). Fracture investigation in starch-based foods. Interface Focus, 6, 20160005.

    Google Scholar 

  • Smith, N. E., & Strait, S. G. (2008). PaleoView3D: from specimen to online digital model. Palaeontologia Electronica, 11.2.11A, 17 pp.

    Google Scholar 

  • Stone, J., & Telford, M. (2005). Fractal dimensions characterizing mammal teeth: a case study involving Elephantidae. Mammal Review, 35, 123–128.

    Article  Google Scholar 

  • Strait, S. G. (1993). Differences in occlusal morphology and molar size in frugivores and faunivores. Journal of Human Evolution, 25, 471–484.

    Google Scholar 

  • Ungar, P., & Williamson, M. (2000). Exploring the effects of tooth wear on functional morphology: a preliminary study using dental topographic analysis. Palaeontologia Electronica, 3.1.1A, 18 pp.

    Google Scholar 

  • Van Valkenburgh, B. (1989). Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In J. L. Gittleman (Ed.), Carnivore behavior, ecology, and evolution (pp. 410–436). Ithaca: Cornell University Press.

    Chapter  Google Scholar 

  • Whitenack, L. B., & Motta, P. J. (2010). Performance of shark teeth during puncture and draw: implications for the mechanics of cutting. Biological Journal of the Linnean Society, 100, 271–286.

    Article  Google Scholar 

  • Wilson, G. P., Evans, A. R., Corfe, I. J., Smits, P. D., Fortelius, M., & Jernvall, J. (2012). Adaptive radiation of multituberculates before the extinction of dinosaurs. Nature, 483, 457–460.

    Article  Google Scholar 

  • Winchester, J. M. (2016). MorphoTester: an open source application for morphological topographic analysis. PLoS ONE, 11, e0147649.

    Article  Google Scholar 

  • Winchester, J. M., Boyer, D. M., St Clair, E. M., Gosselin-Ildari, A. D., Cooke, S. B., & Ledogar, J. A. (2014). Dental topography of platyrrhines and prosimians: convergence and contrasts. American Journal of Physical Anthropology, 153, 29–44.

    Article  Google Scholar 

  • Wright, B. W. (2005). Craniodental biomechanics and dietary toughness in the genus Cebus. Journal of Human Evolution, 48, 473–492.

    Google Scholar 

  • Yamashita, N. (1998). Functional dental correlates of food properties in five Malagasy lemur species. American Journal of Physical Anthropology, 106, 169–188.

    Article  Google Scholar 

  • Zuccotti, L. F., Williamson, M. D., Limp, W. F., & Ungar, P. S. (1998). Modeling primate occlusal topography using geographic information systems technology. American Journal of Physical Anthropology, 107, 137–142.

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to Darin Croft, Denise Su and Scott Simpson for the invitation to attend the Paleoecology Symposium in Cleveland and to contribute to this volume. We also thank Felix Marx, David Hocking, Gudrun Evans, Darin Croft and three anonymous reviewers for comments and suggestions that greatly improved this manuscript. Partial support for this research was provided by the Australian Research Council Future Fellowship FT130100968 to A.R.E. and NSF-DEB 1257625 and the Evolution of Terrestrial Ecosystems program at NMNH Smithsonian Institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair R. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evans, A.R., Pineda-Munoz, S. (2018). Inferring Mammal Dietary Ecology from Dental Morphology. In: Croft, D., Su, D., Simpson, S. (eds) Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-94265-0_4

Download citation

Publish with us

Policies and ethics