Skip to main content

Estimation of Body Size in Fossil Mammals

  • Chapter
  • First Online:
Methods in Paleoecology

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

Body mass is a fundamental ecological parameter of mammals with implications for a variety of other ecological characteristics. While it cannot be directly measured in fossil taxa, it can be inferred using allometric relationships between skeletal dimensions and mass derived from extant species. Many such relationships have been described, primarily for dental and limb dimensions. Methods of statistical analysis vary widely, however, in ways with substantial implications for the inferred masses of fossil species. The subset of extant species from which the relationship is derived must be representative of the evolutionary and ecological scope of the fossil taxa for which mass is to be estimated. Increasing computing power and an explosion of phylogenetic comparative methods offer the opportunity to gain an understanding of the processes driving these important empirical relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, R. M. (1985). Mechanics of posture and gait of some large dinosaurs. Zoological Journal of the Linnean Society, 83, 1–25.

    Article  Google Scholar 

  • Alroy, J. (1998). Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science, 280, 731–734.

    Article  Google Scholar 

  • Alroy, J. (2012). Simple equations for estimating body mass in mammals (and dinosaurs). Journal of Vertebrate Paleontology, SVP Program and Abstracts Book, 2012, 55–56.

    Google Scholar 

  • Anderson, J. F., Hall-Martin, A., & Russell, D. A. (1985). Long-bone circumference and weight in mammals, birds and dinosaurs. Journal of Zoology, 207, 53–61.

    Google Scholar 

  • Basu, C., Falkingham, P. L., & Hutchinson, J. R. (2016). The extinct, giant giraffid Sivatherium giganteum: skeletal reconstruction and body mass estimation. Biology Letters, 12, 20150940.

    Article  Google Scholar 

  • Bates, K. T., Falkingham, P. L., Macaulay, S., Brassey, C., & Maidment, S. C. R. (2015). Downsizing a giant: re-evaluating Dreadnoughtus body mass. Biology Letters, 11, 20150215.

    Article  Google Scholar 

  • Biewener, A. A. (1990). Biomechanics of mammalian terrestrial locomotion. Science, 250, 1097–1103.

    Article  Google Scholar 

  • Biknevicius, A. R. (1999). Body mass estimation in armoured mammals: cautions and encouragements for the use of parameters from the appendicular skeleton. Journal of Zoology, 248, 179–187.

    Article  Google Scholar 

  • Blackburn, T. M., & Gaston, K. J. (1994). Animal body size distributions: patterns, mechanisms and implications. Trends in Ecology & Evolution, 9, 471–474.

    Article  Google Scholar 

  • Brassey, C. A., Maidment, S. C. R., & Barrett, P. M. (2015). Body mass estimates of an exceptionally complete Stegosaurus (Ornithischia: Thyreophora): comparing volumetric and linear bivariate mass estimation methods. Biology Letters, 11, 20140984.

    Article  Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–1789.

    Google Scholar 

  • Calder, W. A. I. (1984). Size, function, and life history. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Campione, N. E., & Evans, D. C. (2012). A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology, 10, 60.

    Article  Google Scholar 

  • Carrano, M. T., & Hutchinson, J. R. (2002). Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda). Journal of Morphology, 253, 207–228.

    Article  Google Scholar 

  • Christiansen, P. (2002). Mass allometry of the appendicular skeleton in terrestrial mammals. Journal of Morphology, 251, 195–209.

    Article  Google Scholar 

  • Conroy, G. C. (1987). Problems of body-weight estimation in fossil primates. International Journal of Primatology, 8, 115–137.

    Article  Google Scholar 

  • Copes, L. E., & Schwartz, G. T. (2010). The scale of it all: postcanine tooth size, the taxon-level effect, and the universality of Gould’s scaling law. Paleobiology, 36, 188–203.

    Article  Google Scholar 

  • Costeur, L. (2004). Cenogram analysis of the Rudabánya mammalian community: palaeoenvironmental interpretations. Palaeontographia Itallica, 90, 303–307.

    Google Scholar 

  • Croft, D. A. (2001). Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Diversity and Distributions, 7, 271–287.

    Article  Google Scholar 

  • Dagosto, M., & Terranova, C. J. (1992). Estimating the body size of Eocene primates: a comparison of results from dental and postcranial variables. International Journal of Primatology, 13, 307–344.

    Article  Google Scholar 

  • Damuth, J. (1990). Problems in estimating body masses of archaic ungulates using dental measurements. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 229–253). Cambridge: Cambridge University Press.

    Google Scholar 

  • Damuth, J., & MacFadden, B. J. (Eds.). (1990). Body size in mammalian paleobiology: Estimation and biological implications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Delson, E., Terranova, C. J., Jungers, W. L., Sargis, E. J., Jablonski, N. G., & Dechow, P. C. (2000). Body mass in Cercopithecidae (Primates, Mammalia): estimation and scaling in extinct and extant taxa. Anthropological Papers of the American Museum of Natural History, 83, 1–159.

    Google Scholar 

  • Egi, N. (2001). Body mass estimates in extinct mammals from limb bone dimensions: the case of North American hyaenodontids. Palaeontology, 44, 497–528.

    Article  Google Scholar 

  • Eisenberg, J. F. (1981). The mammalian radiations. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Evans, A. R., & Pineda-Munoz, S. (2018). Inferring mammal dietary ecology from dental morphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 37–51). Cham: Springer.

    Google Scholar 

  • Evans, A. R., Wilson, G. P., Fortelius, M., & Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.

    Article  Google Scholar 

  • Field, D. J., Lynner, C., Brown, C., & Darroch, S. A. F. (2013). Skeletal correlates for body mass estimation in modern and fossil flying birds. PLoS ONE, 8, e82000.

    Google Scholar 

  • Finarelli, J. A., & Flynn, J. J. (2006). Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Systematic Biology, 55, 301–313.

    Article  Google Scholar 

  • Fortelius, M. (1985). Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zoologica Fennica, 180, 1–76.

    Google Scholar 

  • Fortelius, M. (1990). Problems with using fossil teeth to estimate body sizes of extinct mammals. In J. Damuth & B. J. Macfadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 207–228). Cambridge: Cambridge University Press.

    Google Scholar 

  • Freudenthal, M., & Martín-Suárez, E. (2013). Estimating body mass of fossil rodents. Scripta Geologica, 14, 1–130.

    Google Scholar 

  • Freudenthal, M., & Martín-Suárez, E. (2015). Estimating head and body length in fossil rodents. Scripta Geologica, 149, 1–158.

    Google Scholar 

  • Gillooly, J. F., Allen, A. P., West, G. B., & Brown, J. H. (2005). The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences, USA, 102, 140–145.

    Article  Google Scholar 

  • Gingerich, P. D. (1974). Size variability of the teeth in living mammals and the diagnosis of closely related sympatric fossil species. Journal of Paleontology, 48, 895–903.

    Google Scholar 

  • Gingerich, P. D. (1990). Prediction of body mass in mammalian species from long bone lengths and diameters. Contributions from the Museum of Paleontology, the University of Michigan, 28, 79–92.

    Google Scholar 

  • Gingerich, P. D. (2000). Arithmetic or geometric normality of biological variation: an empirical test of theory. Journal of Theoretical Biology, 204, 201–221.

    Article  Google Scholar 

  • Gingerich, P. D., Smith, B. H., & Rosenberg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology, 58, 81–100.

    Article  Google Scholar 

  • Glazier, D. S. (2013). Log-transformation is useful for examining proportional relationships in allometric scaling. Journal of Theoretical Biology, 334, 200–203.

    Article  Google Scholar 

  • Gordon, C. L. (2003). A first look at estimating body size in dentally conservative marsupials. Journal of Mammalian Evolution, 10, 1–21.

    Article  Google Scholar 

  • Gould, G. C., & MacFadden, B. J. (2004). Gigantism, dwarfism, and Cope’s Rule: “Nothing in evolution makes sense without a phylogeny”. Bulletin of the American Museum of Natural History, 285, 219–237.

    Article  Google Scholar 

  • Gould, S. J. (1975). On the scaling of tooth size in mammals. American Zoologist, 15, 351–362.

    Article  Google Scholar 

  • Hopkins, S. S. B. (2008). Reassessing the mass of exceptionally large rodents using toothrow length and area as proxies for body mass. Journal of Mammalogy, 89, 232–243.

    Article  Google Scholar 

  • Hutchinson, J. R., & Garcia, M. (2002). Tyrannosaurus was not a fast runner. Nature, 415, 1018–1021.

    Article  Google Scholar 

  • Huxley, J. S. (1932). Problems of relative growth. London: Methuen & Co., Ltd.

    Google Scholar 

  • Iskjaer, C., Slade, N. A., Childs, J. E., Glass, G. E., & Korch, G. W. (1989). Body mass as a measure of body size in small mammals. Journal of Mammalogy, 70, 662–667.

    Article  Google Scholar 

  • Janis, C. M. (1990). Correlation of cranial and dental variables with body size in ungulates and macropodoids. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 255–300). Cambridge: Cambridge University Press.

    Google Scholar 

  • Kangas, A. T., Evans, A. R., Thesleff, I., & Jernvall, J. (2004). Nonindependence of mammalian dental characters. Nature, 432, 211–214.

    Article  Google Scholar 

  • Kaufman, J. A., & Smith, R. J. (2002). Statistical issues in the prediction of body mass for Pleistocene canids. Lethaia, 35, 32–34.

    Article  Google Scholar 

  • Kavanagh, K. D., Evans, A. R., & Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449, 427–432.

    Article  Google Scholar 

  • Kay, R. F., & Ungar, P. S. (1997). Dental evidence for diet in some Miocene catarrhines with comments on the effects of phylogeny on the interpretation of adaptation. In D. R. Begun, C. V. Ward & M. D. Rose (Eds.), Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations (pp. 131–151). Dordrecht: Springer.

    Google Scholar 

  • Kerkhoff, A. J., & Enquist, B. J. (2009). Multiplicative by nature: why logarithmic transformation is necessary in allometry. Journal of Theoretical Biology, 257, 519–521.

    Article  Google Scholar 

  • Kovarovic, K., Su, D. F., & Lintulaakso, K. (2018). Mammal community structure analysis. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 349–370). Cham: Springer.

    Google Scholar 

  • LaBarbera, M. (1989). Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics, 20, 97–117.

    Article  Google Scholar 

  • Legendre, S. (1986). Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata, 16, 191–212.

    Google Scholar 

  • Legendre, S. (1989). Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale : Structures, milieux et évolution. Münchner Geowissenschaftliche Abhandlungen A, 16, 1–110.

    Google Scholar 

  • Lindsay, E. H. (1988). Cricetid rodents from Siwalik deposits near Chinji Village. Part 1: Megacricetodontinae. Myocricetodontinae and Dendromurinae. Palaeovertebrata, 18, 95–154.

    Google Scholar 

  • Lindstedt, S. L., & Boyce, M. S. (1985). Seasonality, fasting endurance, and body size in mammals. The American Naturalist, 125, 873–878.

    Article  Google Scholar 

  • Liow, L. H., Fortelius, M., Bingham, E., Lintulaakso, K., Mannila, H., Flynn, L., et al. (2008). Higher origination and extinction rates in larger mammals. Proceedings of the National Academy of Sciences, USA, 105, 6097–6102.

    Article  Google Scholar 

  • Liow, L. H., Fortelius, M., Lintulaakso, K., Mannila, H., & Stenseth, N. C. (2009). Lower extinction risk in sleep-or-hide mammals. The American Naturalist, 173, 264–272.

    Article  Google Scholar 

  • Lockyer, C. (1976). Body weights of some species of large whales. Journal du Conseil / Conseil Permanent International pour l’Exploration de la Mer, 36, 259–273.

    Article  Google Scholar 

  • Maas, M. C., & Krause, D. W. (1994). Mammalian turnover and community structure in the Paleocene of North America. Historical Biology, 8, 91–128.

    Article  Google Scholar 

  • Martin, A. P., & Palumbi, S. R. (1993). Body size, metabolic rate, generation time, and the molecular clock. Proceedings of the National Academy of Sciences, USA, 90, 4087–4091.

    Article  Google Scholar 

  • Martin, R. A. (1980). Body mass and basal metabolism of extinct mammals. Comparative Biochemistry and Physiology – Part A. Physiology, 66, 307–314.

    Google Scholar 

  • Martin, R. A. (1990). Estimating body mass and correlated variables in extinct mammals: travels in the fourth dimension. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 49–68). Cambridge: Cambridge University Press.

    Google Scholar 

  • McMahon, T., & Bonner, J. T. (1983). On size and life. New York: Scientific American Books – W. H. Freeman and Co.

    Google Scholar 

  • McNab, B. K. (1963). Bioenergetics and the determination of home range size. The American Naturalist, 97, 133–140.

    Article  Google Scholar 

  • McNab, B. K. (1988). Complications inherent in scaling the basal rate of metabolism in mammals. The Quarterly Review of Biology, 63, 25–54.

    Article  Google Scholar 

  • Mendoza, M., Janis, C. M., & Palmqvist, P. (2006). Estimating the body mass of extinct ungulates: a study on the use of multiple regression. Journal of Zoology, 270, 90–101.

    Google Scholar 

  • Millien, V., & Bovy, H. (2010). When teeth and bones disagree: body mass estimation of a giant extinct rodent. Journal of Mammalogy, 91, 11–18.

    Article  Google Scholar 

  • Morgan, M. E., Badgley, C., Gunnell, G. F., Gingerich, P. D., Kappelman, J. W., & Maas, M. C. (1995). Comparative paleoecology of Paleogene and Neogene mammalian faunas: body-size structure. Palaeogeography, Palaeoclimatology, Palaeoecology, 115, 287–315.

    Article  Google Scholar 

  • Myers, T. J. (2001). Prediction of marsupial body mass. Australian Journal of Zoology, 49, 99–118.

    Article  Google Scholar 

  • Packard, G. C. (2009). On the use of logarithmic transformations in allometric analyses. Journal of Theoretical Biology, 257, 515–518.

    Article  Google Scholar 

  • Packard, G. C. (2013). Is logarithmic transformation necessary in allometry? Biological Journal of the Linnean Society, 109, 476–486.

    Article  Google Scholar 

  • Pennell, M. W., & Harmon, L. J. (2013). An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Annals of the New York Academy of Sciences, 1289, 90–105.

    Article  Google Scholar 

  • Peters, R. H. (1983). The ecological implications of body size. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Price, S. A., & Hopkins, S. S. B. (2015). The macroevolutionary relationship between diet and body mass across mammals. Biological Journal of the Linnean Society, 115, 173–184.

    Article  Google Scholar 

  • Pyenson, N. D., & Sponberg, S. N. (2011). Reconstructing body size in extinct crown Cetacea (Neoceti) using allometry, phylogenetic methods and tests from the fossil record. Journal of Mammalian Evolution, 18, 269–288.

    Article  Google Scholar 

  • Rafferty, K. L., Walker, A., Ruff, C. B., Rose, M. D., & Andrews, P. J. (1995). Postcranial estimates of body weight in Proconsul, with a note on a distal tibia of P. major from Napak, Uganda. American Journal of Physical Anthropology, 97, 391–402.

    Google Scholar 

  • Reynolds, P. S. (2002). How big is a giant? The importance of method in estimating body size of extinct mammals. Journal of Mammalogy, 83, 321–332.

    Article  Google Scholar 

  • Ricker, W. E. (1973). Linear regression in fishery research. Journal of the Fisheries Research Board of Canada, 30, 409–434.

    Article  Google Scholar 

  • Ricker, W. E. (1984). Computation and uses of central trend lines. Canadian Journal of Zoology, 62, 1897–1905.

    Article  Google Scholar 

  • Rinderknecht, A., & Blanco, R. E. (2008). The largest fossil rodent. Proceedings of the Royal Society B: Biological Sciences, 275, 923–928.

    Article  Google Scholar 

  • Rodriguez, J. (1999). Use of cenograms in mammalian palaeoecology. A critical review. Lethaia, 32, 331–347.

    Google Scholar 

  • Roth, V. L. (1990). Insular dwarf elephants: a case study in body mass estimation and ecological inference. In J. Damuth & B. J. Macfadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 151–180). Cambridge: Cambridge University Press.

    Google Scholar 

  • Roth, V. L. (1992). Inferences from allometry and fossils: dwarfing of elephants on islands. Oxford Surveys in Evolutionary Biology, 8, 259–288.

    Google Scholar 

  • Ruff, C. (1988). Hindlimb articular surface allometry in Hominoidea and Macaca, with comparisons to diaphyseal scaling. Journal of Human Evolution, 17, 687–714.

    Article  Google Scholar 

  • Ruff, C. B. (1990). Body mass and hindlimb bone cross-sectional and articular dimensions in anthropoid primates. In J. Damuth & B. J. Macfadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 119–150). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ruff, C. B. (2002). Long bone articular and diaphyseal structure in old world monkeys and apes. I: locomotor effects. American Journal of Physical Anthropology, 119, 305–342.

    Article  Google Scholar 

  • Ruff, C. B. (2003). Long bone articular and diaphyseal structure in Old World monkeys and apes. II: estimation of body mass. American Journal of Physical Anthropology, 120, 16–37.

    Article  Google Scholar 

  • Ruff, C. B., Scott, W. W., & Liu, A. Y.-C. (1991). Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults. American Journal of Physical Anthropology, 86, 397–413.

    Article  Google Scholar 

  • Sánchez-Villagra, M. R., Aguilera, O., & Horovitz, I. (2003). The anatomy of the world’s largest extinct rodent. Science, 301, 1708–1710.

    Article  Google Scholar 

  • Schmidt-Nielsen, K. (1984). Scaling: Why is animal size so important? Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Schulte-Hostedde, A. I., Zinner, B., Millar, J. S., & Hickling, G. J. (2005). Restitution of mass-size residuals: validating body condition indices. Ecology, 86, 155–163.

    Article  Google Scholar 

  • Scott, J. E. (2011). Folivory, frugivory, and postcanine size in the cercopithecoidea revisited. American Journal of Physical Anthropology, 146, 20–27.

    Article  Google Scholar 

  • Scott, K. M. (1983). Prediction of body weight of fossil Artiodactyla. Zoological Journal of the Linnean Society, 77, 199–215.

    Article  Google Scholar 

  • Scott, K. M. (1990). Postcranial dimensions of ungulates as predictors of body mass. In J. Damuth & B. J. Macfadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 301–336). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sibly, R. M., & Brown, J. H. (2007). Effects of body size and lifestyle on evolution of mammal life histories. Proceedings of the National Academy of Sciences, USA, 104, 17707–17712.

    Article  Google Scholar 

  • Smith, F. A., Boyer, A. G., Brown, J. H., Costa, D. P., Dayan, T., Ernest, S. K. M., et al. (2010). The evolution of maximum body size of terrestrial mammals. Science, 330, 1216–1219.

    Article  Google Scholar 

  • Smith, R. J. (1993). Logarithmic transformation bias in allometry. American Journal of Physical Anthropology, 90, 215–228.

    Article  Google Scholar 

  • Smith, R. J. (2002). Estimation of body mass in paleontology. Journal of Human Evolution, 43, 271–287.

    Article  Google Scholar 

  • Toigo, C., Gaillard, J. M., Van Laere, G., Hewison, M., & Morellet, N. (2006). How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. Ecography, 29, 301–308.

    Article  Google Scholar 

  • Travouillon, K. J., & Legendre, S. (2009). Using cenograms to investigate gaps in mammalian body mass distributions in Australian mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 69–84.

    Article  Google Scholar 

  • Travouillon, K. J., Legendre, S., Archer, M., & Hand, S. J. (2009). Palaeoecological analyses of Riversleigh’s Oligo-Miocene sites: implications for Oligo-Miocene climate change in Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 24–37.

    Article  Google Scholar 

  • Valverde, J. A. (1964). Remarques sur la structure et l’évolution des communautés de vertébrés terrestres. La Terre et La Vie, 111, 121–154.

    Google Scholar 

  • Van Valkenburgh, B. (1990). Skeletal and dental predictors of body mass in predators. In J. Damuth & B. J. Macfadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 181–206). Cambridge: Cambridge University Press.

    Google Scholar 

  • Van Valkenburgh, B., Wang, X., & Damuth, J. (2004). Cope’s Rule, hypercarnivory, and extinction in North American canids. Science, 306, 101–104.

    Article  Google Scholar 

  • Vinyard, C. J., & Hanna, J. (2005). Molar scaling in strepsirrhine primates. Journal of Human Evolution, 49, 241–269.

    Article  Google Scholar 

  • West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122–126.

    Article  Google Scholar 

  • White, C. R., Blackburn, T. M., & Seymour, R. S. (2009). Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution, 63, 2658–2667.

    Article  Google Scholar 

  • Whittaker, R. J. (1999). Scaling, energetics, and diversity. Nature, 401, 865–866.

    Article  Google Scholar 

  • Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. The Annals of Statistics, 14, 1261–1295.

    Article  Google Scholar 

  • Xiao, X., White, E., Hooten, M., & Durham, S. (2011). On the use of log-transformation vs. nonlinear regression for analyzing biological power-laws. Ecology, 92, 1887–1894.

    Article  Google Scholar 

  • Zar, J. H. (2010). Biostatistical analysis (5th ed). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

Download references

Acknowledgments

Thanks are due to Darin Croft, Scott Simpson and Denise Su for organizing the mammal paleoecology symposium that led to this volume, inspiring numerous exciting and productive conversations. I also owe thanks to Samantha Price for endless patience in teaching me phylogenetic comparative methods. Thanks to undergraduate and graduate students past and present for questioning assumptions, inspiring research, and actually getting science done. In particular, I will be ever grateful to John Orcutt for deep discussions of body size evolution in the course of his dissertation research. Finally, thanks to Edward Davis for years of discussion of body mass reconstruction, statistics of fossil samples, and regression analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha S. B. Hopkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hopkins, S.S.B. (2018). Estimation of Body Size in Fossil Mammals. In: Croft, D., Su, D., Simpson, S. (eds) Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-94265-0_2

Download citation

Publish with us

Policies and ethics