Estimation of Body Size in Fossil Mammals

Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


Body mass is a fundamental ecological parameter of mammals with implications for a variety of other ecological characteristics. While it cannot be directly measured in fossil taxa, it can be inferred using allometric relationships between skeletal dimensions and mass derived from extant species. Many such relationships have been described, primarily for dental and limb dimensions. Methods of statistical analysis vary widely, however, in ways with substantial implications for the inferred masses of fossil species. The subset of extant species from which the relationship is derived must be representative of the evolutionary and ecological scope of the fossil taxa for which mass is to be estimated. Increasing computing power and an explosion of phylogenetic comparative methods offer the opportunity to gain an understanding of the processes driving these important empirical relationships.


Body mass Proxy Mammalia Regression Allometry Paleoecology 



Thanks are due to Darin Croft, Scott Simpson and Denise Su for organizing the mammal paleoecology symposium that led to this volume, inspiring numerous exciting and productive conversations. I also owe thanks to Samantha Price for endless patience in teaching me phylogenetic comparative methods. Thanks to undergraduate and graduate students past and present for questioning assumptions, inspiring research, and actually getting science done. In particular, I will be ever grateful to John Orcutt for deep discussions of body size evolution in the course of his dissertation research. Finally, thanks to Edward Davis for years of discussion of body mass reconstruction, statistics of fossil samples, and regression analysis.


  1. Alexander, R. M. (1985). Mechanics of posture and gait of some large dinosaurs. Zoological Journal of the Linnean Society, 83, 1–25.CrossRefGoogle Scholar
  2. Alroy, J. (1998). Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science, 280, 731–734.CrossRefGoogle Scholar
  3. Alroy, J. (2012). Simple equations for estimating body mass in mammals (and dinosaurs). Journal of Vertebrate Paleontology, SVP Program and Abstracts Book, 2012, 55–56.Google Scholar
  4. Anderson, J. F., Hall-Martin, A., & Russell, D. A. (1985). Long-bone circumference and weight in mammals, birds and dinosaurs. Journal of Zoology, 207, 53–61.Google Scholar
  5. Basu, C., Falkingham, P. L., & Hutchinson, J. R. (2016). The extinct, giant giraffid Sivatherium giganteum: skeletal reconstruction and body mass estimation. Biology Letters, 12, 20150940.CrossRefGoogle Scholar
  6. Bates, K. T., Falkingham, P. L., Macaulay, S., Brassey, C., & Maidment, S. C. R. (2015). Downsizing a giant: re-evaluating Dreadnoughtus body mass. Biology Letters, 11, 20150215.CrossRefGoogle Scholar
  7. Biewener, A. A. (1990). Biomechanics of mammalian terrestrial locomotion. Science, 250, 1097–1103.CrossRefGoogle Scholar
  8. Biknevicius, A. R. (1999). Body mass estimation in armoured mammals: cautions and encouragements for the use of parameters from the appendicular skeleton. Journal of Zoology, 248, 179–187.CrossRefGoogle Scholar
  9. Blackburn, T. M., & Gaston, K. J. (1994). Animal body size distributions: patterns, mechanisms and implications. Trends in Ecology & Evolution, 9, 471–474.CrossRefGoogle Scholar
  10. Brassey, C. A., Maidment, S. C. R., & Barrett, P. M. (2015). Body mass estimates of an exceptionally complete Stegosaurus (Ornithischia: Thyreophora): comparing volumetric and linear bivariate mass estimation methods. Biology Letters, 11, 20140984.CrossRefGoogle Scholar
  11. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–1789.Google Scholar
  12. Calder, W. A. I. (1984). Size, function, and life history. Cambridge, MA: Harvard University Press.Google Scholar
  13. Campione, N. E., & Evans, D. C. (2012). A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology, 10, 60.CrossRefGoogle Scholar
  14. Carrano, M. T., & Hutchinson, J. R. (2002). Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda). Journal of Morphology, 253, 207–228.CrossRefGoogle Scholar
  15. Christiansen, P. (2002). Mass allometry of the appendicular skeleton in terrestrial mammals. Journal of Morphology, 251, 195–209.CrossRefGoogle Scholar
  16. Conroy, G. C. (1987). Problems of body-weight estimation in fossil primates. International Journal of Primatology, 8, 115–137.CrossRefGoogle Scholar
  17. Copes, L. E., & Schwartz, G. T. (2010). The scale of it all: postcanine tooth size, the taxon-level effect, and the universality of Gould’s scaling law. Paleobiology, 36, 188–203.CrossRefGoogle Scholar
  18. Costeur, L. (2004). Cenogram analysis of the Rudabánya mammalian community: palaeoenvironmental interpretations. Palaeontographia Itallica, 90, 303–307.Google Scholar
  19. Croft, D. A. (2001). Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Diversity and Distributions, 7, 271–287.CrossRefGoogle Scholar
  20. Dagosto, M., & Terranova, C. J. (1992). Estimating the body size of Eocene primates: a comparison of results from dental and postcranial variables. International Journal of Primatology, 13, 307–344.CrossRefGoogle Scholar
  21. Damuth, J. (1990). Problems in estimating body masses of archaic ungulates using dental measurements. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 229–253). Cambridge: Cambridge University Press.Google Scholar
  22. Damuth, J., & MacFadden, B. J. (Eds.). (1990). Body size in mammalian paleobiology: Estimation and biological implications. Cambridge: Cambridge University Press.Google Scholar
  23. Delson, E., Terranova, C. J., Jungers, W. L., Sargis, E. J., Jablonski, N. G., & Dechow, P. C. (2000). Body mass in Cercopithecidae (Primates, Mammalia): estimation and scaling in extinct and extant taxa. Anthropological Papers of the American Museum of Natural History, 83, 1–159.Google Scholar
  24. Egi, N. (2001). Body mass estimates in extinct mammals from limb bone dimensions: the case of North American hyaenodontids. Palaeontology, 44, 497–528.CrossRefGoogle Scholar
  25. Eisenberg, J. F. (1981). The mammalian radiations. Chicago, IL: University of Chicago Press.Google Scholar
  26. Evans, A. R., & Pineda-Munoz, S. (2018). Inferring mammal dietary ecology from dental morphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 37–51). Cham: Springer.Google Scholar
  27. Evans, A. R., Wilson, G. P., Fortelius, M., & Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.CrossRefGoogle Scholar
  28. Field, D. J., Lynner, C., Brown, C., & Darroch, S. A. F. (2013). Skeletal correlates for body mass estimation in modern and fossil flying birds. PLoS ONE, 8, e82000.Google Scholar
  29. Finarelli, J. A., & Flynn, J. J. (2006). Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Systematic Biology, 55, 301–313.CrossRefGoogle Scholar
  30. Fortelius, M. (1985). Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zoologica Fennica, 180, 1–76.Google Scholar
  31. Fortelius, M. (1990). Problems with using fossil teeth to estimate body sizes of extinct mammals. In J. Damuth & B. J. Macfadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 207–228). Cambridge: Cambridge University Press.Google Scholar
  32. Freudenthal, M., & Martín-Suárez, E. (2013). Estimating body mass of fossil rodents. Scripta Geologica, 14, 1–130.Google Scholar
  33. Freudenthal, M., & Martín-Suárez, E. (2015). Estimating head and body length in fossil rodents. Scripta Geologica, 149, 1–158.Google Scholar
  34. Gillooly, J. F., Allen, A. P., West, G. B., & Brown, J. H. (2005). The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences, USA, 102, 140–145.CrossRefGoogle Scholar
  35. Gingerich, P. D. (1974). Size variability of the teeth in living mammals and the diagnosis of closely related sympatric fossil species. Journal of Paleontology, 48, 895–903.Google Scholar
  36. Gingerich, P. D. (1990). Prediction of body mass in mammalian species from long bone lengths and diameters. Contributions from the Museum of Paleontology, the University of Michigan, 28, 79–92.Google Scholar
  37. Gingerich, P. D. (2000). Arithmetic or geometric normality of biological variation: an empirical test of theory. Journal of Theoretical Biology, 204, 201–221.CrossRefGoogle Scholar
  38. Gingerich, P. D., Smith, B. H., & Rosenberg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology, 58, 81–100.CrossRefGoogle Scholar
  39. Glazier, D. S. (2013). Log-transformation is useful for examining proportional relationships in allometric scaling. Journal of Theoretical Biology, 334, 200–203.CrossRefGoogle Scholar
  40. Gordon, C. L. (2003). A first look at estimating body size in dentally conservative marsupials. Journal of Mammalian Evolution, 10, 1–21.CrossRefGoogle Scholar
  41. Gould, G. C., & MacFadden, B. J. (2004). Gigantism, dwarfism, and Cope’s Rule: “Nothing in evolution makes sense without a phylogeny”. Bulletin of the American Museum of Natural History, 285, 219–237.CrossRefGoogle Scholar
  42. Gould, S. J. (1975). On the scaling of tooth size in mammals. American Zoologist, 15, 351–362.CrossRefGoogle Scholar
  43. Hopkins, S. S. B. (2008). Reassessing the mass of exceptionally large rodents using toothrow length and area as proxies for body mass. Journal of Mammalogy, 89, 232–243.CrossRefGoogle Scholar
  44. Hutchinson, J. R., & Garcia, M. (2002). Tyrannosaurus was not a fast runner. Nature, 415, 1018–1021.CrossRefGoogle Scholar
  45. Huxley, J. S. (1932). Problems of relative growth. London: Methuen & Co., Ltd.Google Scholar
  46. Iskjaer, C., Slade, N. A., Childs, J. E., Glass, G. E., & Korch, G. W. (1989). Body mass as a measure of body size in small mammals. Journal of Mammalogy, 70, 662–667.CrossRefGoogle Scholar
  47. Janis, C. M. (1990). Correlation of cranial and dental variables with body size in ungulates and macropodoids. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 255–300). Cambridge: Cambridge University Press.Google Scholar
  48. Kangas, A. T., Evans, A. R., Thesleff, I., & Jernvall, J. (2004). Nonindependence of mammalian dental characters. Nature, 432, 211–214.CrossRefGoogle Scholar
  49. Kaufman, J. A., & Smith, R. J. (2002). Statistical issues in the prediction of body mass for Pleistocene canids. Lethaia, 35, 32–34.CrossRefGoogle Scholar
  50. Kavanagh, K. D., Evans, A. R., & Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449, 427–432.CrossRefGoogle Scholar
  51. Kay, R. F., & Ungar, P. S. (1997). Dental evidence for diet in some Miocene catarrhines with comments on the effects of phylogeny on the interpretation of adaptation. In D. R. Begun, C. V. Ward & M. D. Rose (Eds.), Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations (pp. 131–151). Dordrecht: Springer.Google Scholar
  52. Kerkhoff, A. J., & Enquist, B. J. (2009). Multiplicative by nature: why logarithmic transformation is necessary in allometry. Journal of Theoretical Biology, 257, 519–521.CrossRefGoogle Scholar
  53. Kovarovic, K., Su, D. F., & Lintulaakso, K. (2018). Mammal community structure analysis. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 349–370). Cham: Springer.Google Scholar
  54. LaBarbera, M. (1989). Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics, 20, 97–117.CrossRefGoogle Scholar
  55. Legendre, S. (1986). Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata, 16, 191–212.Google Scholar
  56. Legendre, S. (1989). Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale : Structures, milieux et évolution. Münchner Geowissenschaftliche Abhandlungen A, 16, 1–110.Google Scholar
  57. Lindsay, E. H. (1988). Cricetid rodents from Siwalik deposits near Chinji Village. Part 1: Megacricetodontinae. Myocricetodontinae and Dendromurinae. Palaeovertebrata, 18, 95–154.Google Scholar
  58. Lindstedt, S. L., & Boyce, M. S. (1985). Seasonality, fasting endurance, and body size in mammals. The American Naturalist, 125, 873–878.CrossRefGoogle Scholar
  59. Liow, L. H., Fortelius, M., Bingham, E., Lintulaakso, K., Mannila, H., Flynn, L., et al. (2008). Higher origination and extinction rates in larger mammals. Proceedings of the National Academy of Sciences, USA, 105, 6097–6102.CrossRefGoogle Scholar
  60. Liow, L. H., Fortelius, M., Lintulaakso, K., Mannila, H., & Stenseth, N. C. (2009). Lower extinction risk in sleep-or-hide mammals. The American Naturalist, 173, 264–272.CrossRefGoogle Scholar
  61. Lockyer, C. (1976). Body weights of some species of large whales. Journal du Conseil / Conseil Permanent International pour l’Exploration de la Mer, 36, 259–273.CrossRefGoogle Scholar
  62. Maas, M. C., & Krause, D. W. (1994). Mammalian turnover and community structure in the Paleocene of North America. Historical Biology, 8, 91–128.CrossRefGoogle Scholar
  63. Martin, A. P., & Palumbi, S. R. (1993). Body size, metabolic rate, generation time, and the molecular clock. Proceedings of the National Academy of Sciences, USA, 90, 4087–4091.CrossRefGoogle Scholar
  64. Martin, R. A. (1980). Body mass and basal metabolism of extinct mammals. Comparative Biochemistry and Physiology – Part A. Physiology, 66, 307–314.Google Scholar
  65. Martin, R. A. (1990). Estimating body mass and correlated variables in extinct mammals: travels in the fourth dimension. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 49–68). Cambridge: Cambridge University Press.Google Scholar
  66. McMahon, T., & Bonner, J. T. (1983). On size and life. New York: Scientific American Books – W. H. Freeman and Co.Google Scholar
  67. McNab, B. K. (1963). Bioenergetics and the determination of home range size. The American Naturalist, 97, 133–140.CrossRefGoogle Scholar
  68. McNab, B. K. (1988). Complications inherent in scaling the basal rate of metabolism in mammals. The Quarterly Review of Biology, 63, 25–54.CrossRefGoogle Scholar
  69. Mendoza, M., Janis, C. M., & Palmqvist, P. (2006). Estimating the body mass of extinct ungulates: a study on the use of multiple regression. Journal of Zoology, 270, 90–101.Google Scholar
  70. Millien, V., & Bovy, H. (2010). When teeth and bones disagree: body mass estimation of a giant extinct rodent. Journal of Mammalogy, 91, 11–18.CrossRefGoogle Scholar
  71. Morgan, M. E., Badgley, C., Gunnell, G. F., Gingerich, P. D., Kappelman, J. W., & Maas, M. C. (1995). Comparative paleoecology of Paleogene and Neogene mammalian faunas: body-size structure. Palaeogeography, Palaeoclimatology, Palaeoecology, 115, 287–315.CrossRefGoogle Scholar
  72. Myers, T. J. (2001). Prediction of marsupial body mass. Australian Journal of Zoology, 49, 99–118.CrossRefGoogle Scholar
  73. Packard, G. C. (2009). On the use of logarithmic transformations in allometric analyses. Journal of Theoretical Biology, 257, 515–518.CrossRefGoogle Scholar
  74. Packard, G. C. (2013). Is logarithmic transformation necessary in allometry? Biological Journal of the Linnean Society, 109, 476–486.CrossRefGoogle Scholar
  75. Pennell, M. W., & Harmon, L. J. (2013). An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Annals of the New York Academy of Sciences, 1289, 90–105.CrossRefGoogle Scholar
  76. Peters, R. H. (1983). The ecological implications of body size. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  77. Price, S. A., & Hopkins, S. S. B. (2015). The macroevolutionary relationship between diet and body mass across mammals. Biological Journal of the Linnean Society, 115, 173–184.CrossRefGoogle Scholar
  78. Pyenson, N. D., & Sponberg, S. N. (2011). Reconstructing body size in extinct crown Cetacea (Neoceti) using allometry, phylogenetic methods and tests from the fossil record. Journal of Mammalian Evolution, 18, 269–288.CrossRefGoogle Scholar
  79. Rafferty, K. L., Walker, A., Ruff, C. B., Rose, M. D., & Andrews, P. J. (1995). Postcranial estimates of body weight in Proconsul, with a note on a distal tibia of P. major from Napak, Uganda. American Journal of Physical Anthropology, 97, 391–402.Google Scholar
  80. Reynolds, P. S. (2002). How big is a giant? The importance of method in estimating body size of extinct mammals. Journal of Mammalogy, 83, 321–332.CrossRefGoogle Scholar
  81. Ricker, W. E. (1973). Linear regression in fishery research. Journal of the Fisheries Research Board of Canada, 30, 409–434.CrossRefGoogle Scholar
  82. Ricker, W. E. (1984). Computation and uses of central trend lines. Canadian Journal of Zoology, 62, 1897–1905.CrossRefGoogle Scholar
  83. Rinderknecht, A., & Blanco, R. E. (2008). The largest fossil rodent. Proceedings of the Royal Society B: Biological Sciences, 275, 923–928.CrossRefGoogle Scholar
  84. Rodriguez, J. (1999). Use of cenograms in mammalian palaeoecology. A critical review. Lethaia, 32, 331–347.Google Scholar
  85. Roth, V. L. (1990). Insular dwarf elephants: a case study in body mass estimation and ecological inference. In J. Damuth & B. J. Macfadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 151–180). Cambridge: Cambridge University Press.Google Scholar
  86. Roth, V. L. (1992). Inferences from allometry and fossils: dwarfing of elephants on islands. Oxford Surveys in Evolutionary Biology, 8, 259–288.Google Scholar
  87. Ruff, C. (1988). Hindlimb articular surface allometry in Hominoidea and Macaca, with comparisons to diaphyseal scaling. Journal of Human Evolution, 17, 687–714.CrossRefGoogle Scholar
  88. Ruff, C. B. (1990). Body mass and hindlimb bone cross-sectional and articular dimensions in anthropoid primates. In J. Damuth & B. J. Macfadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 119–150). Cambridge: Cambridge University Press.Google Scholar
  89. Ruff, C. B. (2002). Long bone articular and diaphyseal structure in old world monkeys and apes. I: locomotor effects. American Journal of Physical Anthropology, 119, 305–342.CrossRefGoogle Scholar
  90. Ruff, C. B. (2003). Long bone articular and diaphyseal structure in Old World monkeys and apes. II: estimation of body mass. American Journal of Physical Anthropology, 120, 16–37.CrossRefGoogle Scholar
  91. Ruff, C. B., Scott, W. W., & Liu, A. Y.-C. (1991). Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults. American Journal of Physical Anthropology, 86, 397–413.CrossRefGoogle Scholar
  92. Sánchez-Villagra, M. R., Aguilera, O., & Horovitz, I. (2003). The anatomy of the world’s largest extinct rodent. Science, 301, 1708–1710.CrossRefGoogle Scholar
  93. Schmidt-Nielsen, K. (1984). Scaling: Why is animal size so important? Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  94. Schulte-Hostedde, A. I., Zinner, B., Millar, J. S., & Hickling, G. J. (2005). Restitution of mass-size residuals: validating body condition indices. Ecology, 86, 155–163.CrossRefGoogle Scholar
  95. Scott, J. E. (2011). Folivory, frugivory, and postcanine size in the cercopithecoidea revisited. American Journal of Physical Anthropology, 146, 20–27.CrossRefGoogle Scholar
  96. Scott, K. M. (1983). Prediction of body weight of fossil Artiodactyla. Zoological Journal of the Linnean Society, 77, 199–215.CrossRefGoogle Scholar
  97. Scott, K. M. (1990). Postcranial dimensions of ungulates as predictors of body mass. In J. Damuth & B. J. Macfadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 301–336). Cambridge: Cambridge University Press.Google Scholar
  98. Sibly, R. M., & Brown, J. H. (2007). Effects of body size and lifestyle on evolution of mammal life histories. Proceedings of the National Academy of Sciences, USA, 104, 17707–17712.CrossRefGoogle Scholar
  99. Smith, F. A., Boyer, A. G., Brown, J. H., Costa, D. P., Dayan, T., Ernest, S. K. M., et al. (2010). The evolution of maximum body size of terrestrial mammals. Science, 330, 1216–1219.CrossRefGoogle Scholar
  100. Smith, R. J. (1993). Logarithmic transformation bias in allometry. American Journal of Physical Anthropology, 90, 215–228.CrossRefGoogle Scholar
  101. Smith, R. J. (2002). Estimation of body mass in paleontology. Journal of Human Evolution, 43, 271–287.CrossRefGoogle Scholar
  102. Toigo, C., Gaillard, J. M., Van Laere, G., Hewison, M., & Morellet, N. (2006). How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. Ecography, 29, 301–308.CrossRefGoogle Scholar
  103. Travouillon, K. J., & Legendre, S. (2009). Using cenograms to investigate gaps in mammalian body mass distributions in Australian mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 69–84.CrossRefGoogle Scholar
  104. Travouillon, K. J., Legendre, S., Archer, M., & Hand, S. J. (2009). Palaeoecological analyses of Riversleigh’s Oligo-Miocene sites: implications for Oligo-Miocene climate change in Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 24–37.CrossRefGoogle Scholar
  105. Valverde, J. A. (1964). Remarques sur la structure et l’évolution des communautés de vertébrés terrestres. La Terre et La Vie, 111, 121–154.Google Scholar
  106. Van Valkenburgh, B. (1990). Skeletal and dental predictors of body mass in predators. In J. Damuth & B. J. Macfadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 181–206). Cambridge: Cambridge University Press.Google Scholar
  107. Van Valkenburgh, B., Wang, X., & Damuth, J. (2004). Cope’s Rule, hypercarnivory, and extinction in North American canids. Science, 306, 101–104.CrossRefGoogle Scholar
  108. Vinyard, C. J., & Hanna, J. (2005). Molar scaling in strepsirrhine primates. Journal of Human Evolution, 49, 241–269.CrossRefGoogle Scholar
  109. West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122–126.CrossRefGoogle Scholar
  110. White, C. R., Blackburn, T. M., & Seymour, R. S. (2009). Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution, 63, 2658–2667.CrossRefGoogle Scholar
  111. Whittaker, R. J. (1999). Scaling, energetics, and diversity. Nature, 401, 865–866.CrossRefGoogle Scholar
  112. Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. The Annals of Statistics, 14, 1261–1295.CrossRefGoogle Scholar
  113. Xiao, X., White, E., Hooten, M., & Durham, S. (2011). On the use of log-transformation vs. nonlinear regression for analyzing biological power-laws. Ecology, 92, 1887–1894.CrossRefGoogle Scholar
  114. Zar, J. H. (2010). Biostatistical analysis (5th ed). Englewood Cliffs: Prentice-Hall.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geological SciencesClark Honors College, 1293 University of OregonEugeneUSA

Personalised recommendations