Skip to main content

Mammal Community Structure Analysis

  • Chapter
  • First Online:
Methods in Paleoecology

Abstract

Fundamentally rooted in Odum’s niche concept , mammal community studies are based on the understanding that each resident species reveals information about its environment through its adaptations to specific resources and landscape features. Ecologists view the community’s profile of strategies for exploiting particular spatial and dietary niches; a quantitative summary of these strategies when compared across locales from a variety of habitat types demonstrates striking similarities in the communities that live in similar habitats regardless of their location. Recognizing that communities can be compared across space, paleoecologists implemented community studies across time in an effort to reconstruct past environments. This synecological approach to paleoenvironmental reconstruction may be thought of as holistic, since it is not restricted to a single mammal family. However, thorough explorations of how fossil and extant communities differ have revealed significant dissimilarities brought about by the taphonomic history of paleontological assemblages. Techniques have been developed for addressing differences between the modern comparative community sample and the paleontological sample to which it is compared, but recent research conducted by both neo- and paleoecologists has suggested that there are unappreciated differences between modern habitats, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, R. M. (1977). Allometry of the limbs of antelopes (Bovidae). Journal of Zoology, London, 183, 125–146.

    Article  Google Scholar 

  • Anderson, M. J., & Willis, T. J. (2003). Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology, 84, 511–525.

    Article  Google Scholar 

  • Andrews, P. (1989). Paleoecology of Laetoli. Journal of Human Evolution, 18, 173–181.

    Article  Google Scholar 

  • Andrews, P. (1990a). Owls, caves, and fossils. Chicago: The University of Chicago Press.

    Google Scholar 

  • Andrews, P. (1990b). Small mammal taphonomy. In E. H. Lindsey, V. Fahlbusch & P. Mein (Eds.), European Neogene mammal chronology (pp. 487–494). New York: Plenum Press.

    Google Scholar 

  • Andrews, P. (1996). Paleoecology and hominoid palaeoenvironments. Biological Reviews, 71, 257–300.

    Article  Google Scholar 

  • Andrews, P., & Humphrey, L. (1999). African Miocene environments and the transition to early hominines. In T. G. Bromage & F. Schrenk (Eds.), African biogeography. Climate change and human evolution (pp. 282–300). Oxford: Oxford University Press.

    Google Scholar 

  • Andrews, P., & Nesbit Evans, E. (1979). The environment of Ramapithecus in Africa. Paleobiology, 5, 22–30.

    Article  Google Scholar 

  • Andrews, P., & Van Couvering, J. H. (1975). Paleoenvironments in the East African Miocene. In F. Szalay (Ed.), Approaches to primate paleobiology (pp. 62–103). Basel: Karger.

    Google Scholar 

  • Andrews, P., Lord, J. M., & Nesbit Evans, E. M. (1979). Patterns of ecological diversity in fossil and modern mammalian faunas. Biological Journal of the Linnean Society, 11, 177–205.

    Article  Google Scholar 

  • Ashley, G. M., Tactikos, J. C., & Owen, R. B. (2009). Hominin use of springs and wetlands: paleoclimate and archaeological records from Olduvai Gorge (1.79–1.74 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 1–16.

    Article  Google Scholar 

  • Avery, D. M. (2007). Micromammals as palaeoenvironmental indicators of the southern African Quaternary. Transactions of the Royal Society of South Africa, 62, 17–23.

    Article  Google Scholar 

  • Badgley, C., Bartels, W. S., Morgan, M. E., Behrensmeyer, A. K., & Raza, S. M. (1995). Taphonomy of vertebrate assemblages from the Paleogene of northwestern Wyoming and the Neogene of northern Pakistan. Palaeogeography, Palaeoclimatology, Palaeoecology, 115, 157–180.

    Article  Google Scholar 

  • Barnosky, A. D., & Lindsey, E. L. (2010). Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quaternary International, 217, 10–29.

    Article  Google Scholar 

  • Barnosky, A. D., Lindsey, E. L., Villavicencio, N. A., Bostelmann, E., Hadly, E. A., Wanket, J., et al. (2016). Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proceedings of the National Academy of Sciences, USA, 113, 856–861.

    Article  Google Scholar 

  • Barr, W. A. (2018). Ecomorphology. In D. A. Croft, D. F. Su & S.W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 337–347). Cham: Springer.

    Google Scholar 

  • Barry, J. C., Morgan, M. E., Flynn, L. J., Pilbeam, D., Behrensmeyer, A. K., Raza, S. M., Khan, I. A., Badgley, C, Hicks, J., Kelley, J. (2002). Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan. Paleobiology, 28, 1–71.

    Google Scholar 

  • Bedaso, Z. K., Wynn, J. G., Alemseged, Z., & Geraads, D. (2013). Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: implication for Australopithecus afarensis habitat and food resources. Journal of Human Evolution, 64, 21–38.

    Article  Google Scholar 

  • Behrensmeyer, A. K. (1975). Taphonomy and paleoecology in the hominid fossil record. Yearbook of Physical Anthropology, 19, 36–50.

    Google Scholar 

  • Behrensmeyer, A. K. (2015). Four million years of African herbivory. Proceedings of the National Academy of Sciences, USA, 112, 11428–11429.

    Article  Google Scholar 

  • Behrensmeyer, A. K., & Hill, A. P. (1980). Fossils in the making: Vertebrate taphonomy and paleoecology. Chicago: The University of Chicago Press.

    Google Scholar 

  • Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., & Wing, S. L. (1992). Terrestrial ecosystems through time: Evolutionary paleoecology of terrestrial plants and animals. Chicago: The University of Chicago Press.

    Google Scholar 

  • Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15, 483–502.

    Article  Google Scholar 

  • Blumenschine, R. J., & Peters, C. R. (1998). Archaeological predictions for hominid land use in the paleo-Olduvai Basin, Tanzania, during lowermost Bed II times. Journal of Human Evolution, 34, 565–607.

    Article  Google Scholar 

  • Blumenschine, R. J., Peters, C. R., Masao, F. T., Clarke, R. L., Deino, A. L., Hay, R. L., et al. (2003). Late Pliocene Homo and hominid land use from western Olduvai Gorge, Tanzania. Science, 299, 1217–1221.

    Article  Google Scholar 

  • Blumenschine, R. J., Masao, F. T., Stollhofen, H., Stanistreet, I. G., Bamford, M. K., Albert, R. M., et al. (2012a). Landscape distribution of Oldowan stone artifact assemblages across the fault compartments of the eastern Olduvai Lake Basin during early lowermost Bed II times. Journal of Human Evolution, 63, 384–394.

    Article  Google Scholar 

  • Blumenschine, R. J., Stanistreet, I. G., & Masao, F. T. (2012b). Olduvai Gorge and the Olduvai landscape paleoanthroplogy project. Journal of Human Evolution, 63, 247–250.

    Article  Google Scholar 

  • Brown, J. H. (1981). Two decades of homage to Santa Rosalia: toward a general theory of diversity. American Zoologist, 21, 877–888.

    Article  Google Scholar 

  • Campisano, C. J., & Feibel, C. S. (2007). Connecting local environmental sequences to global climate patterns: evidence from the hominin-bearing Hadar Formation, Ethiopia. Journal of Human Evolution, 53, 515–527.

    Article  Google Scholar 

  • Catibog-Singa, C., Catibog, C. S., & Heaney, L. R. (2006). Philippine biodiversity: Principles and practice. Haribon Foundation.

    Google Scholar 

  • Cerling, T. E., & Hay, R. L. (1986). An isotopic study of paleosol carbonates from Olduvai Gorge. Quaternary Research, 25, 63–78.

    Article  Google Scholar 

  • Cerling, T. E., Andanje, S. A., Blumenthal, S. A., Brown, F. H., Chritz, K. L., Harris, J. M., et al. (2015). Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proceedings of the National Academy of Sciences, USA, 112, 11467–11472.

    Article  Google Scholar 

  • Cione, A. L., Soibelzon, L., & Tonni, E. P. (2003). The broken zig-zag; Late Cenozoic large mammal and tortoise extinction in South America. Revista del Museo Argentino de Ciencias Naturales, Nueva Serie, 5, 1–19.

    Article  Google Scholar 

  • Clarke, K. R., & Warwick, R. M. (1994). Change in marine communities: An approach to statistical analysis and interpretation. Primer-E Ltd: Plymouth, UK.

    Google Scholar 

  • Clarke, K. R., & Warwick, R. M. (2001). A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series, 216, 265–278.

    Article  Google Scholar 

  • Clyde, W. C., & Gingerich, P. D. (1998). Mammalian community response to the latest Paleocene thermal maximum: an isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology, 26, 1011–1014.

    Article  Google Scholar 

  • Coe, H. (2009). Atmospheric energy and the structure of the atmosphere. In C. N. Hewitt & A. V. Jackson (Eds.), Atmospheric science for environmental scientists (pp. 54–82). West Sussex: Wiley.

    Google Scholar 

  • Coe, M. (1980). The role of modern ecological studies in the reconstruction of palaeoenvironments in sub-Saharan Africa. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making: Vertebrate taphonomy and paleoecology (pp. 55–67). Chicago: The University of Chicago Press.

    Google Scholar 

  • Croft, D. A. (2001). Cenozoic environmental change in South American as indicated by mammalian body size distributions (cenograms). Diversity and Distributions, 7, 271–287.

    Article  Google Scholar 

  • Croft, D. A. (2006). Do marsupials make good predators? Insights from predator-prey diversity ratios. Evolutionary Ecology Research, 8, 1193–1214.

    Google Scholar 

  • Croft, D. A. (2013). What constitutes a fossil mammal community in the early Miocene Santa Cruz Formation? Journal of Vertebrate Paleontology, 33, 401–409.

    Article  Google Scholar 

  • Croft, D. A., Flynn, J. J., & Wyss, A. R. (2008). The Tinguiririca Fauna of Chile and the early stages of “modernization” of South American mammal faunas. Arquivos do Museu Nacional, 66, 191–211.

    Google Scholar 

  • Cushing, A. E. (2002). The landscape zooarchaeology and paleontology of Plio-Pleistocene Olduvai, Tanzania and their implications for early hominid ecology. Ph.D. Dissertation, Rutgers, the State University of New Jersey.

    Google Scholar 

  • Damuth, J., & MacFadden, B. J. (1990). Body size in mammalian paleobiology: Estimation and biological implications. Cambridge: Cambridge University Press.

    Google Scholar 

  • De Vivo, M., & Carmignotto, A. P. (2004). Holocene vegetation change and the mammal faunas of South America and Africa. Journal of Biogeography, 31, 943–957.

    Article  Google Scholar 

  • Deino, A. L. (2012). 40Ar/39Ar dating of Bed I, Olduvai Gorge, Tanzania, and the chronology of early Pleistocene climate change. Journal of Human Evolution, 63, 251–273.

    Article  Google Scholar 

  • Dunn, R. E., Strömberg, C. A. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2015). Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science, 347, 258–261.

    Google Scholar 

  • Dunn, R. H. (2018). Functional morphology of the postcranial skeleton. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 23–36). Cham: Springer.

    Google Scholar 

  • Eisenberg, J. F. (1981). The mammalian radiations: An analysis of trends in evolution, adaptation, and behavior. Chicago: The University of Chicago Press.

    Google Scholar 

  • Eiten, G. (1992). How names are used for vegetation. Journal of Vegetation Science, 3, 419–424.

    Article  Google Scholar 

  • Elton, C. S. (1927). Animal ecology. New York: MacMillan Co.

    Google Scholar 

  • Eronen, J. T., Puolamäki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C., et al. (2010a). Precipitation and large herbivorous mammals II: application to fossil data. Evolutionary Ecology Research, 12, 235–248.

    Google Scholar 

  • Eronen, J. T., Polly, P. D., Fred, M., Damuth, J., Frank, D. C., Mosbrugger, V., et al. (2010b). Ecometrics: the traits that bind the past and present together. Integrative Zoology, 5, 88–101.

    Article  Google Scholar 

  • Evans, A. R., & Pineda-Munoz, S. (2018). Inferring mammal dietary ecology from dental morphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 37–51). Cham: Springer.

    Google Scholar 

  • Faith, J. T., Tryon, C. A., Peppe, D. J., Beverly, E. J., & Blegen, N. (2014). Biogeographic and evolutionary implications of an extinct late Pleistocene impala from the Lake Victoria Basin, Kenya. Journal of Mammalian Evolution, 21, 213–222.

    Article  Google Scholar 

  • Fernandez-Jalvo, Y., Denys, C., Andrews, P., Williams, T., Dauphin, Y., & Humphrey, L. (1998). Taphonomy and paleoecology of Olduvai Bed-I (Pleistocene, Tanzania). Journal of Human Evolution, 34, 137–172.

    Article  Google Scholar 

  • Flagstad, Ø., Syversten, P. O., Stenseth, N. C., & Jakobsen, K. S. (2001). Environmental change and rates of evolution: the phylogeographic pattern within the hartebeest complex as related to climatic variation. Proceedings of the Royal Society B, 268, 667–677.

    Article  Google Scholar 

  • Fleming, T. H. (1973). Numbers of mammal species in North and Central American forest communities. Ecology, 54, 555–563.

    Google Scholar 

  • Flynn, J. J., Wyss, A. R., Croft, D. A., & Charrier, R. (2003). The Tinguiririca Fauna, Chile: biochronology, paleoecology, biogeography, and a new earliest Oligocene South American Land Mammal ‘Age’. Palaeogeography, Palaeoclimatology Palaeoecology, 195, 229–259.

    Article  Google Scholar 

  • Fortelius, M. (1990). Problems using fossil teeth to estimate body sizes of extinct mammals. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 207–288). New York: Cambridge University Press.

    Google Scholar 

  • Fortelius, M., Eronen, J., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., et al. (2002). Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research, 4, 1005–1016.

    Google Scholar 

  • Fortelius, M., Žliobaitė, I., Kaya, F., Bibi, F., Bobe, R., Leakey, L., et al. (2016). An ecometric analysis of the fossil mammal record of the Turkana Basin. Philosophical Transactions of the Royal Society B, 371, 20150232.

    Article  Google Scholar 

  • Fukami, T. (2015). Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1–23.

    Article  Google Scholar 

  • Geise, L., Pereira, L. G., Bossi, D. E. P., & Bergallo, H. G. (2004). Pattern of elevational distribution and richness of non volant mammals in Itatiaia National Park and its surroundings, in southeastern Brazil. Brazilian Journal of Biology, 64, 599–612.

    Article  Google Scholar 

  • Gentry, A. H. (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients? Annals of the Missouri Botanical Garden, 75, 1–34.

    Google Scholar 

  • Gentry, A. W., & Gentry, A. (1978). Fossil Bovidae (Mammalia) of Olduvai Gorge, Tanzania, Part II. Bulletin of the British Museum of Natural History (Geology), 30, 1–83.

    Google Scholar 

  • Gillman, L. N., Keeling, D. J., Ross, H. A., & Wright, S. D. (2009). Latitude, elevation and the tempo of molecular evolution in mammals. Proceedings of the Royal Society of London B: Biological Sciences, 276, 3353–3359.

    Article  Google Scholar 

  • Gingerich, P. D. (1989). New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan Papers on Paleontology, 28, 1–97.

    Google Scholar 

  • Gingerich, P. D., Smith, B. H., & Rosenberg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology, 58, 81–100.

    Article  Google Scholar 

  • Gould, S. J. (1975). On the scaling of tooth size in mammals. American Zoologist, 15, 351–362.

    Article  Google Scholar 

  • Graham, C. H., & Fine, P. V. (2008). Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology letters, 11, 1265–1277.

    Article  Google Scholar 

  • Green, J. L., & Croft, D. A. (2018). Using dental mesowear and microwear for dietary inference: a review of current techniques and applications. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 53–73). Cham: Springer.

    Google Scholar 

  • Greenacre, M. J. (1984). Theory and applications of correspondence analysis. New York: Academic Press.

    Google Scholar 

  • Greenacre, M. J., & Vrba, E. S. (1984). Graphical display and interpretation of antelope census data in African wildlife areas, using correspondence analysis. Ecology, 65, 984–997.

    Article  Google Scholar 

  • Hanya, G., Stevenson, P., van Noordwijk, M., Te Wong, S., Kanamori, T., Kuze, N., et al. (2011). Seasonality in fruit availability affects frugivorous primate biomass and species richness. Ecography, 34, 1009–1017.

    Article  Google Scholar 

  • Happold, D. C. D. (1987). The mammals of Nigeria. Oxford: Clarendon Press.

    Google Scholar 

  • Harrison, J. L. (1962). The distribution of feeding habits among animals in a tropical rain forest. Journal of Animal Ecology, 31, 53–63.

    Article  Google Scholar 

  • Harrison, T. (2011). Laetoli revisited: renewed paleontological and geological investigations at localities on the Eyasi Plateau in northern Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 1–15). Dordrecht: Springer Press.

    Google Scholar 

  • Hay, R. L. (1976). The geology of Olduvai Gorge: A study of sedimentation in a semiarid basin. Berkeley: University of California Press.

    Google Scholar 

  • Hay, R. L. (1990). Olduvai Gorge: a case history in the interpretation of hominid paleoenvironments in East Africa. In L. F. Laporte (Ed.), Establishment of a geological framework for paleoanthropology (pp. 23–37). Geological Society of America Special Paper 242.

    Google Scholar 

  • Hessler, I., Dupont, L., Bonnefille, R., Behling, H., González, C., Helmens, K. F., et al. (2010). Millennial-scale changes in vegetation records from tropical Africa and South America during the last glacial. Quaternary Science Reviews, 29, 2882–2899.

    Article  Google Scholar 

  • Higgins, P. (2018). Isotope ecology from biominerals. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 99–120). Cham: Springer.

    Google Scholar 

  • Hopkins, S. S. B. (2008). Reassessing the mass of exceptionally large rodents using toothrow length and area as proxies for body mass. Journal of Mammalogy, 89, 232–243.

    Article  Google Scholar 

  • Hopkins, S. S. B. (2018). Estimation of body size in fossil mammals. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 7–22). Cham: Springer.

    Google Scholar 

  • Hutchinson, G. E. (1957). The multivariate niche. Cold Spring Harbor Symposium of Quantitative Biology, 22, 415–421.

    Article  Google Scholar 

  • Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145–159.

    Article  Google Scholar 

  • Janis, C. M. (1993). Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics, 24, 467–500.

    Article  Google Scholar 

  • Kappelman, J. (1984). Plio-Pleistocene environments of Bed I and lower Bed II, Olduvai Gorge, Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 48, 171–196.

    Article  Google Scholar 

  • Kappelman, J. (1988). Morphology and locomotor adaptations of the bovid femur in relation to habitat. Journal of Morphology, 198, 119–130.

    Google Scholar 

  • Karr, J. R. (1971). Structure of avian communities in selected Panama and Illinois habitats. Ecological Monographs, 41, 207–233.

    Article  Google Scholar 

  • Kay, R. F., & Madden, R. H. (1997). Mammals and rainfall: paleoecology of the middle Miocene at La Venta (Colombia, South America). Journal of Human Evolution, 32, 161–199.

    Article  Google Scholar 

  • Kindt, R, & Coe, R. (2005). Three diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. Nairobi: World Agroforestry Centre (ICRAF).

    Google Scholar 

  • Kingston, J. D., & Harrison, T. (2007). Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: implications for early hominin paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, 272–306.

    Google Scholar 

  • Kovarovic, K., Andrews, P., & Aiello, L. C. (2002). The palaeoecology of the Upper Ndolanya Beds at Laetoli, Tanzania. Journal of Human Evolution, 43, 395–418.

    Article  Google Scholar 

  • Kovarovic, K., Aiello, L. C., Cardini, A., & Lockwood, C. A. (2011). Discriminant function analyses in archaeology: are classifications rates too good to be true? Journal of Archaeological Science, 38, 3006–3018.

    Article  Google Scholar 

  • Kovarovic, K., Slepkov, R., & McNulty, K. P. (2013). Ecological continuity between Lower and Upper Bed II, Olduvai Gorge, Tanzania. Journal of Human Evolution, 64, 538–555.

    Article  Google Scholar 

  • Kurtén, B. (1952). The Chinese Hipparion fauna. Commentationes Biological, Societas Scientiarum Fennica, 13, 1–82.

    Google Scholar 

  • Lawesson, J. E. (1994). Some comments on the classification of African vegetation. Journal of Vegetation Science, 5, 441–444.

    Article  Google Scholar 

  • Leakey, M. D. (1971). Olduvai Gorge: Excavations in Beds I and II 1960–1963 (Vol. 3). Cambridge: Cambridge University Press.

    Google Scholar 

  • Leakey, M. D., & Harris, J. M. (Eds.). (1987). Laetoli: A Pliocene site in northern Tanzania. Oxford: Clarendon Press.

    Google Scholar 

  • Legendre, S. (1986). Analysis of mammalian communities from the late Eocene and Oligocene of Southern France. Paleovertebrata, 16, 191–212.

    Google Scholar 

  • Legendre, S. (1989). Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale: structures, milieux et evolution. Münchner Geowissenschafliche Abhandlungen A, 16, 1–110.

    Google Scholar 

  • Lintulaakso, K., & Kovarovic, K. (2016). Diet and locomotion, but not body size, differentiate mammal communities in worldwide tropical ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 454, 20–29.

    Article  Google Scholar 

  • Lomolino, M. V., Riddle, B. R., Brown, J. H., & Brown, J. H. (2006). Biogeography. Sunderland: Sinauer Associates.

    Google Scholar 

  • Losos, J. B. (1996). Phylogenetic perspectives on community ecology. Ecology, 77, 1344–1354.

    Article  Google Scholar 

  • Louys, J. (2007). Ecology and extinction of southeast Asia’s megafauna. Ph.D. Dissertation, University of New South Wales.

    Google Scholar 

  • Louys, J., Travouillon, K. J., Bassarova, M., & Tong, H. (2009). The use of protected natural areas in palaeoecological analyses: assumptions, limitations and application. Journal of Archaeological Science, 36, 2274–2288.

    Article  Google Scholar 

  • Louys, J., Meloro, C., Elton, S., Ditchfield, P., & Bishop, L. C. (2011). Mammal community structure correlates with arboreal heterogeneity in faunally and geographically diverse habitats: implications for community convergence. Global Ecology and Biogeography, 20, 717–729.

    Article  Google Scholar 

  • Louys, J., Meloro, C., Elton, S., Ditchfield, P., & Bishop, L. C. (2015). Analytical framework for reconstructing heterogeneous environmental variables from mammal community structure. Journal of Human Evolution, 78, 1–11.

    Article  Google Scholar 

  • MacArthur, R. H., & Wilson, E. O. (1967). Theory of island biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Mares, M. A., & Willig, M. R. (1994). Inferring biome associations of Recent mammals from samples of temperate and tropical faunas: paleoecological considerations. Historical Biology, 8, 31–48.

    Article  Google Scholar 

  • Meloro, C., & Kovarovic, K. (2013). Spatial and ecometric analyses of the Plio-Pleistocene large mammal communities of the Italian peninsula. Journal of Biogeography, 40, 1451–1462.

    Article  Google Scholar 

  • Mendoza, M., Goodwin, B., & Criado, C. (2004). Emergence of community structure in terrestrial mammal-dominated ecosystems. Journal of Theoretical Biology, 230, 203–214.

    Article  Google Scholar 

  • Nesbit Evans, E. M., Van Couvering, J. A. H., & Andrews, P. (1981). Paleoecology of Miocene sites in western Kenya. Journal of Human Evolution, 10, 99–116.

    Article  Google Scholar 

  • Odum, E. P. (1953). Fundamentals of ecology. Philadelphia: W.B. Saunders Company.

    Google Scholar 

  • Odum, E. P. (1959). Fundamentals of ecology (2nd ed.). Philadelphia: W.B. Saunders Company.

    Google Scholar 

  • Olson, J. S., Watts, J. A., & Allison, L. J. (1983). Carbon in live vegetation of major world ecosystems. Oak Ridge: Oak Ridge National Laboratory.

    Google Scholar 

  • Olson, J. S., Watts, J. A., & Allison, L. J. (1985). Major world ecosystem complexes ranked by carbon in live vegetation: A database. Oak Ridge: Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory.

    Google Scholar 

  • Overpeck, J., Whitlock, C., & Huntley, B. (2003). Terrestrial biosphere dynamics in the climate system: past and future. In K. D. Alverson, R. Bradley & T. F. Peterson (Eds.), Paleoclimate, global change and the future (pp. 81–103). Berlin: Springer.

    Google Scholar 

  • Pianka, E. R. (1970). On r-and K-selection. The American Naturalist, 104, 592–597.

    Article  Google Scholar 

  • Pimm, S. L., & Lawton, J. H. (1978). On feeding on more than one trophic level. Nature, 275, 542–544.

    Article  Google Scholar 

  • Pineda-Munoz, S., & Alroy, J. (2014). Dietary characterization of terrestrial mammals. Proceedings of the Royal Society B: Biological Sciences, 281, 20141173.

    Article  Google Scholar 

  • Pineda-Munoz, S., Evans, A. R., & Alroy, J. (2016). The relationship between diet and body mass in terrestrial mammals. Paleobiology, 42, 659–669.

    Article  Google Scholar 

  • Potts, R. (1988). Early hominid activities at Olduvai Gorge. New York: Aldine de Gruyter.

    Google Scholar 

  • Reed, D. N. (2007). Serengeti micromammals and their implications for Olduvai paleoenvironments. In R. Bobe, Z. Alemseged & A. K. Behrensmeyer (Eds.), Hominin environments in the East African Pliocene: An assessment of the faunal evidence (pp. 217–255). Dordrecht: Springer.

    Google Scholar 

  • Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.

    Article  Google Scholar 

  • Reed, K. E. (1998). Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology, 24, 384–408.

    Google Scholar 

  • Reed, K. E. (2008). Paleoecological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. Journal of Human Evolution, 54, 743–768.

    Article  Google Scholar 

  • Rodríguez, J. (1999). Use of cenograms in mammalian palaeoecology. A critical review. Lethaia, 32, 331–347.

    Google Scholar 

  • Rodríguez, J., Hortal, J., & Nieto, M. (2006). An evaluation of the influence of environment and biogeography on community structure: the case of Holarctic mammals. Journal of Biogeography, 33, 291–303.

    Article  Google Scholar 

  • Ruddiman, W. F. (2007). Earth’s climate: Past and future. New York: Macmillan.

    Google Scholar 

  • Schick, R. S., Halpin, P. N., Read, A. J., Urban, D. L., Best, B. D., Good, C. P., et al. (2011). Community structure in pelagic marine mammals at large spatial scales. Marine Ecology Progress Series, 434, 165–181.

    Article  Google Scholar 

  • Schrenk, F., Bromage, T. G., Gorthner, A., & Sandrock, O. (1995). Paleoecology of the Malawi Rift: vertebrate and invertebrate faunal contexts of the Chiwondo Beds, northern Malawi. Journal of Human Evolution, 28, 59–70.

    Article  Google Scholar 

  • Scott, K. M. (1990). Postcranial dimensions of ungulates as predictors of body mass. In J. Damuth & B. J. MacFadden (Eds.), Body size in mammalian paleobiology: Estimation and biological implications (pp. 301–355). New York: Cambridge University Press.

    Google Scholar 

  • Semken, H. A., Jr., Graham, R. W., & Stafford, T. W., Jr. (2010). AMS 14C analysis of Late Pleistocene non-analog faunal components from 21 cave deposits in southeastern North America. Quaternary International, 217, 240–255.

    Article  Google Scholar 

  • Shipman, P., & Harris, J. (1988). Habitat preference and paleoecology of Australopithecus boisei in Eastern Africa. In F. E. Grine (Ed.), Evolutionary history of the “robust” australopithecines (pp. 343–381). New York: Aldine de Gruyter.

    Google Scholar 

  • Simpson, G. G. (1964). Species density of North American Recent mammals. Systematic Zoology, 13, 57–73.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. New York: W. H. Freeman and Company.

    Google Scholar 

  • Soligo, C., & Andrews, P. (2005). Taphonomic bias, taxonomic bias and historical non-equivalence of faunal structure in early hominin localities. Journal of Human Evolution, 49, 206–229.

    Article  Google Scholar 

  • Sponheimer, M., & Lee-Thorp, J. A. (2003). Using carbon isotope data of fossil bovid communities for paleoenvironmental reconstruction. South African Journal of Science, 99, 273–275.

    Google Scholar 

  • Stanistreet, I. G. (2012). Fine resolution of early hominin time, Beds I and II, Olduvai Gorge, Tanzania. Journal of Human Evolution, 63, 300–308.

    Article  Google Scholar 

  • Stoetzel, E., Marion, L., Nespoulet, R., El Hajraoui, M. A., & Denys, C. (2011). Taphonomy and paleoecology of the late Pleistocene to middle Holocene small mammal succession of El Harhoura 2 cave (Rabat-Témara, Morocco). Journal of Human Evolution, 60, 1–33.

    Article  Google Scholar 

  • Strömberg, C. A. (2011). Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences, 39, 517–544.

    Article  Google Scholar 

  • Su, D. F. (2005). The paleoecology of Laetoli, Tanzania: Evidence from the mammalian fauna of the Upper Laetolil Beds. Ph.D. Dissertation, New York University.

    Google Scholar 

  • Su, D. F. (2011). Large mammal evidence for the paleoenvironment of the Upper Laetoli and Upper Ndolanya beds of Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology, paleoecology and paleoenvironment (pp. 381–392). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Su, D. F. (2016). The taphonomy and paleoecology of Korsi Dora Vertebrate Locality 1, Woranso-Mille Study Area, Ethiopia. In Y. Haile-Selassie & D. F. Su (Eds.), The postcranial anatomy of Australopithecus afarensis: New insights from KSD-VP-1/1 (pp. 25–37). New York: Springer.

    Google Scholar 

  • Su, D. F., & Haile-Selassie, Y. (in press). Mosaic habitats at Woranso-Mille (Ethiopia) during the Pliocene and implications for Australopithecus paleoecology. In S. Reynolds & R. Bobe (Eds.), African paleoecology and human evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Su, D. F., & Harrison, T. (2007). The paleoecology of the Upper Laetoli Beds at Laetoli. In R. Bobe, Z. Alemseged & A. K. Behrensmeyer (Eds.), Hominin environments in the East African Pliocene: An assessment of the faunal evidence (pp. 279–313). Dordrecht: Springer.

    Google Scholar 

  • Su, D. F, & Harrison, T. (2015). The paleoecology of the upper Laetolil Beds, Laetoli, Tanzania: A review and synthesis. Journal of African Earth Sciences 101, 405–419.

    Google Scholar 

  • Su, D. F., Ambrose, S. H., Degusta, D., & Haile-Selassie, Y. (2009). Paleoenvironment. In Y. Haile-Selassie & G. WoldeGabriel (Eds.), Ardipithecus kadabba: Late Miocene evidence from the Middle Awash, Ethiopia (pp. 521–547). Berkeley: University of California Press.

    Google Scholar 

  • Thibault, K. M., & Brown, J. H. (2008). Impact of an extreme climatic event on community assembly. Proceedings of the National Academy of Sciences, USA, 105, 3410–3415.

    Article  Google Scholar 

  • Thibault, K. M., White, E. P., & Morgan Ernest, S. K. (2004). Temporal dynamics in the structure and composition of a desert rodent community. Ecology, 85, 2649–2655.

    Article  Google Scholar 

  • Townsend, K. E. B., Rasmussen, D. T., Murphey, P. C., & Evanoff, E. (2010). Middle Eocene habitat shifts in the North American western interior: A case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 144–158.

    Article  Google Scholar 

  • Van Couvering, J. A. H. (1980). Community evolution in East Africa during the late Cenozoic. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making: Vertebrate taphonomy and paleoecology (pp. 272–298). Chicago: The University of Chicago Press.

    Google Scholar 

  • Voorhies, M. R. (1969a). Sampling difficulties in reconstructing late Tertiary mammalian communities. Proceedings of the North American Paleontological Convention, Part E, pp. 454–468.

    Google Scholar 

  • Voorhies, M. R. (1969b). Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Laramie: University of Wyoming.

    Book  Google Scholar 

  • Warton, D. I., & Hui, F. K. (2011). The arcsine is asinine: the analysis of proportions in ecology. Ecology, 92, 3–10.

    Article  Google Scholar 

  • Warwick, R. M., & Clarke, K. R. (1995). New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series, 129, 301–305.

    Article  Google Scholar 

  • Western, D., & Behrensmeyer, A. K. (2009). Bone assemblages track animal community structure over 40 years in an African savannah ecosystem. Science, 324, 1061–1064.

    Article  Google Scholar 

  • White, F. (1983). The vegetation of Africa: A descriptive memoir to accompany the Unesco/AETFAT/UNSO vegetation map of Africa. Paris: Unesco.

    Google Scholar 

  • White, T. D., Ambrose, S. H., Suwa, G., Su, D. F., DeGusta, D., Bernor, R. L., et al. (2009). Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science, 326, 87–93.

    Google Scholar 

  • Williams, S. E., Marsh, H., & Winter, J. (2002). Spatial scale, species diversity, and habitat structure: small mammals in Australian tropical rain forest. Ecology, 83, 1317–1329.

    Article  Google Scholar 

  • Wilson, V. J. (1975). Mammals of the Wankie National Park. Museum Memoirs of the National Museums and Monuments of Rhodesia, 4, 1–147.

    Google Scholar 

  • Vrba, E. S. (1980). The significance of bovid remains as indicators of environment and predation patterns. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making: Vertebrate taphonomy and paleoecology (pp. 247–271). Chicago: The University of Chicago Press.

    Google Scholar 

  • Yodzis, P. (1984). How rare is omnivory? Ecology, 65, 321–323.

    Article  Google Scholar 

  • Žliobaitė, I., Rinne, J., Tóth, A. B., Mechenich, M., Liu, L., Behrensmeyer, A. K., et al. (2016). Herbivore teeth predict climatic limits in Kenyan ecosystems. Proceedings of the National Academy of Sciences, USA, 113, 12751–12756.

    Article  Google Scholar 

  • Zuur, A. F., Leno, E. N., & Smith, G. M. (2007). Analysing ecological data. New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

KK and KL gratefully acknowledge Denise Su, Darin Croft and Scott Simpson for the invitation to participate in the “Latest Methods in Reconstructing Cenozoic Terrestrial Environments and Ecological Communities” symposium in Cleveland 2015. KK sincerely thanks the organizers for support and assistance with childcare during the symposium and for useful discussions throughout. We also thank Peter Andrews for his continued advice and insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Kovarovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kovarovic, K., Su, D.F., Lintulaakso, K. (2018). Mammal Community Structure Analysis. In: Croft, D., Su, D., Simpson, S. (eds) Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-94265-0_16

Download citation

Publish with us

Policies and ethics