Skip to main content

Rotating Black Hole Solutions in f(R)-Gravity

  • Conference paper
  • First Online:
2nd Karl Schwarzschild Meeting on Gravitational Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 208))

  • 405 Accesses

Abstract

We present a strategy to get axially symmetric solutions in f(R) gravity by starting from spherically symmetric space-times. To do so, we assume the validity of a complex coordinate transformation, which acts on the spherically symmetric metric and permits one to infer the corresponding f(R) modification. The consequences of this recipe are here described, giving particular emphasis to define a class of compatible axially symmetric solutions, which fairly well describes the motion in cylindrical geometries in the field of f(R), in two different classes of coordinates. We demonstrate that our approach is general and may be applied for several cases of interest. We also show that our treatment is compatible with the standard approach of general relativity, evaluating the motion of a freely falling particle in the context of our metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Capozziello, M. De Laurentis, Int. J. Geom. Methods Mod. Phys. 11, 1460004 (2014)

    Article  MathSciNet  Google Scholar 

  3. S. CapozzielloA, A.Troisi Stabile, Class. Quant. Gravity 25, 085004 (2008)

    Article  ADS  Google Scholar 

  4. S. Capozziello, M. De Laurentis, A. Stabile, Class. Quantum Gravity 27, 165008 (2010)

    Article  ADS  Google Scholar 

  5. R. Farinelli, M. De Laurentis, S. Capozziello, S.D. Odintsov, MNRAS 440(3), 2894 (2014)

    Article  Google Scholar 

  6. S. Capozziello, M. De Laurentis, S.D. Odintsov, A. Stabile, Phys. Rev. D 83, 064004 (2011)

    Article  ADS  Google Scholar 

  7. E.T. Newman, A.I. Janis, J. Math. Phys. 6, 915 (1965)

    Article  ADS  Google Scholar 

  8. E.T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash, R. Torrence, J. Math. Phys. 6, 918 (1965)

    Article  ADS  Google Scholar 

  9. R. D’Inverno, Introducing Einstein’s Relativity (Oxford University Press, New York, 1992)

    Google Scholar 

  10. M.M. Schiffer, R.J. Adler, J. Mark, C. Sheffield, J. Math. Phys. 14, 52 (1973)

    Article  ADS  Google Scholar 

  11. G.C. Debney, R.P. Kerr, A. Schild, J. Math. Phys. 10, 1842 (1969)

    Article  ADS  Google Scholar 

  12. M. Gürses, F. Gürsey, J. Math. Phys. 16, 2385 (1975)

    Article  ADS  Google Scholar 

  13. E. Berti (2014). arXiv:1410.4481 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. De Laurentis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Laurentis, M., Farinelli, R. (2018). Rotating Black Hole Solutions in f(R)-Gravity. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 2nd Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-94256-8_5

Download citation

Publish with us

Policies and ethics