Skip to main content

Size Scaling of Self Gravitating Polymers and Strings

  • Conference paper
  • First Online:
2nd Karl Schwarzschild Meeting on Gravitational Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 208))

Abstract

A typical configuration of a long free fundamental string is described as a free random walk. With self-gravitational interaction, the configuration contracts and eventually the size becomes comparable to the Schwarzschild radius of a black hole of the same energy, where the string configuration is identified with the corresponding black hole. We consider the size change of a long string at a fixed large excited level by use of tools developed in polymer physics. We introduce a contact self-repulsive interaction as well as Newtonian gravitational interaction and find that the size exhibits interesting scaling behaviors, which are summarized in diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin, 1916), pp. 189–196 (English translation is at physics/9905030v1.)

    Google Scholar 

  2. D. Mitchell, N. Turok, Statistical mechanics of cosmic strings, Phys. Rev. Lett. 58, 1577 (1987), D. Mitchell, N. Turok, Statistical properties of cosmic strings. Nucl. Phys. B 294, 1138 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.L. Manes, String form-factors. JHEP 0401, 033 (2004). [hep-th/0312035], J.L. Manes, Portrait of the string as a random walk, JHEP 0503, 070 (2005). [hep-th/0412104]

    Google Scholar 

  4. L. Susskind, Some speculations about black hole entropy in string theory, in The Black Hole, ed. by C. Teitelboim, pp. 118–131. [hep-th/9309145]

    Chapter  Google Scholar 

  5. G.T. Horowitz, J. Polchinski, A correspondence principle for black holes and strings. Phys. Rev. D 55, 6189 (1997). [hep-th/9612146]

    Article  ADS  MathSciNet  Google Scholar 

  6. G.T. Horowitz, J. Polchinski, Selfgravitating fundamental strings. Phys. Rev. D 57, 2557 (1998). [hep-th/9707170]

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Damour, G. Veneziano, Selfgravitating fundamental strings and black holes. Nucl. Phys. B 568, 93 (2000). [hep-th/9907030]

    Article  ADS  Google Scholar 

  8. D. Amati, J.G. Russo, Fundamental strings as black bodies. Phys. Lett. B 454, 207 (1999). [arXiv:hep-th/9901092]

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Kawamoto, T. Matsuo, Emission spectrum of soft massless states from heavy superstring. Phys. Rev. D 87(12), 124001 (2013). arXiv:1304.7488 [hep-th]

  10. S.K. Rama, Size of black holes through polymer scaling. Phys. Lett. B 424, 39 (1998). [hep-th/9710035]

    Article  ADS  MathSciNet  Google Scholar 

  11. R.R. Khuri, Selfgravitating strings and string/black hole correspondence. Phys. Lett. B 470, 73 (1999). [hep-th/9910122]

    Article  ADS  MathSciNet  Google Scholar 

  12. R.R. Khuri, Black holes and strings: the polymer link. Mod. Phys. Lett. A 13, 1407 (1998). [gr-qc/9803095]

    Article  ADS  MathSciNet  Google Scholar 

  13. L. Susskind, The World as a hologram. J. Math. Phys. 36, 6377 (1995). [hep-th/9409089]; L. Susskind, J. Lindesay, An Introduction to Black Holes, Information and the String Theory Revolution: The Holographic Universe (World Scientific Publishing Company, 2004)

    Google Scholar 

  14. S. Kawamoto, T. Matsuo, Size scaling of self gravitating polymers and strings, arXiv:1506.01160 [hep-th]

  15. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986), S.F. Edwards, M. Muthukumar, The size of a polymer in random media, J. Chem. Phys. 89(4), 2435–2441 (1988)

    Google Scholar 

  16. P.J. Flory, The configuration of real polymer chains. The Journal of Chemical Physics 17.3, 303–310 (1949), P.J. Flory, Principles of Polymer Chemistry, Cornell University Press (1953)

    Google Scholar 

  17. P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell university press, 1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kawamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kawamoto, S., Matsuo, T. (2018). Size Scaling of Self Gravitating Polymers and Strings. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 2nd Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-94256-8_21

Download citation

Publish with us

Policies and ethics