Skip to main content

A Quantum Cosmic Conjecture

  • Conference paper
  • First Online:
2nd Karl Schwarzschild Meeting on Gravitational Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 208))

  • 401 Accesses

Abstract

For a quantum mechanically Gaussian shaped, electrically charged, massive particle, we compute the Horizon Wave-function(s) in order to study (a) the existence of the inner Cauchy horizon of the corresponding Reissner–Nordström space-time when the charge-to-mass ratio \(0<\alpha <1\) and (b) the survival of a naked singularity when the charge-to-mass ratio \(\alpha >1\). Our results suggest that any semiclassical instability one expects near the inner horizon may not occur in quantum black holes, with a mass around the Planck scale, and that no states with charge-to-mass ratio greater than a critical value (of the order of \(\sqrt{2}\)) should exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such objects would remain quantum mechanical even in astrophysical regimes, where we expect the horizon has a sharp location. This result therefore supports alternative models of black holes as extended quantum objects, like the ones in [4, 8].

References

  1. R. Casadio, Localised particles and fuzzy horizons: a tool for probing quantum black holes, arXiv:1305.3195 [gr-qc]; R. Casadio, F. Scardigli, Horizon wave-function for single localized particles: GUP and quantum black hole decay, Eur. Phys. J. C 74, 2685 (2014), arXiv:1306.5298 [gr-qc]; X. Calmet, R. Casadio, The horizon of the lightest black hole, arXiv:1509.02055 [hep-th]

  2. R. Casadio, Horizons and non-local time evolution of quantum mechanical systems. Eur. Phys. J. C 75, 160 (2015), arXiv:1411.5848 [gr-qc]

  3. R. Casadio, O. Micu, F. Scardigli, Quantum hoop conjecture: Black hole formation by particle collisions. Phys. Lett. B 732, 105 (2014), arXiv:1311.5698 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Casadio, A. Giugno, O. Micu, A. Orlandi, Black holes as self-sustained quantum states, and Hawking radiation. Phys. Rev. D 90, 084040 (2014), arXiv:1405.4192 [hep-th]; R. Casadio, A. Giugno, A. Orlandi, Thermal corpuscular black holes, Phys. Rev. D 91, 124069 (2015), arXiv:1504.05356 [gr-qc]

  5. R. Casadio, O. Micu, D. Stojkovic, Inner horizon of the quantum Reissner–Nordströ m black holes. JHEP 1505, 096 (2015), arXiv:1503.01888 [gr-qc]

  6. R. Casadio, O. Micu, D. Stojkovic, Horizon wave-function and the quantum cosmic censorship. Phys. Lett. B 747, 68 (2015), arXiv:1503.02858 [gr-qc]

    Article  ADS  Google Scholar 

  7. E. Poisson, W. Israel, Internal structure of black holes, Phys. Rev. D 41, 1796 (1990); V.I. Dokuchaev, Mass inflation inside black holes revisited, Class. Quantum Gravity 31, 055009 (2014), arXiv:1309.0224 [gr-qc]; E. Brown, R.B. Mann, Instability of the noncommutative geometry inspired black hole, Phys. Lett. B 694, 440 (2011), arXiv:1012.4787 [hep-th]; E.G. Brown, R.B. Mann, L. Modesto, Mass inflation in the loop black hole. Phys. Rev. D 84, 104041 (2011), arXiv:1104.3126 [gr-qc]

  8. G. Dvali, C. Gomez, “Black holes as critical point of quantum phase transition, arXiv:1207.4059 [hep-th]; Black hole’s 1/N hair, Phys. Lett. B 719, 419 (2013), arXiv:1203.6575 [hep-th]; R. Casadio, A. Orlandi, Quantum harmonic black holes, JHEP 1308, 025 (2013), arXiv:1302.7138 [hep-th]

  9. R. Penrose, Gravitational collapse: the role of general relativity, Riv. Nuovo Cim. 1, 252 (1969); Gen. Relativ. Gravit. 34, 1141 (2002)

    Google Scholar 

Download references

Acknowledgements

We would like to thank D. Stojkovic for his contribution to the work reported here. R.C. was supported in part by the INFN grant FLAG. O.M. was supported in part by research grant UEFISCDI project PN-II-RU-TE-2011-3-0184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Casadio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casadio, R., Micu, O. (2018). A Quantum Cosmic Conjecture. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 2nd Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-94256-8_14

Download citation

Publish with us

Policies and ethics