Skip to main content

Some Classical/Quantum Aspects of Calabi-Yau Moduli

  • 566 Accesses

Part of the Trends in Mathematics book series (TM)

Abstract

We review some classical and quantum geometry of Calabi-Yau moduli related to B-model aspects of closed string mirror symmetry. This note comes out of the author’s lectures in the workshop “B-model aspects of Gromov-Witten theory” held at University of Michigan in 2013.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-94220-9_4
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-94220-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)

References

  1. Barannikov, S.: Extended moduli spaces and mirror symmetry in dimensions n > 3, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), University of California, Berkeley (1999)

    Google Scholar 

  2. Barannikov, S.: Quantum periods, I. Semi-infinite variations of Hodge structures. Int. Math. Res. Not. 23, 1243–1264 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Barannikov, S.: Non-commutative periods and mirror symmetry in higher dimensions. Commun. Math. Phys. 228(2), 281–325 (2002)

    MathSciNet  CrossRef  Google Scholar 

  4. Barannikov, S.: Semi-infinite Hodge structures and mirror symmetry for projective spaces (2001). arXiv:math.AG/0010157

    Google Scholar 

  5. Barannikov, S., Kontsevich, M.: Frobenius manifolds and formality of Lie algebras of polyvectorfields. Int. Math. Res. Not. 4, 201–215 (1998)

    CrossRef  Google Scholar 

  6. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165(2), 311–427 (1994). MR1301851(95f:32029)

    Google Scholar 

  7. Coates, T., Givental, A.B.: Quantum Riemann-Roch, Lefschetz and Serre. Ann. Math. (2) 165(1), 15–53 (2007)

    Google Scholar 

  8. Costello, K.: Topological conformal field theories and Calabi-Yau categories. Adv. Math. 210(1), 165–214 (2007)

    MathSciNet  CrossRef  Google Scholar 

  9. Costello, K.: The partition function of a topological field theory. J. Topol. 2(4), 779–822 (2009)

    MathSciNet  CrossRef  Google Scholar 

  10. Costello, K.: Renormalization and Effective Field Theory. Mathematical Surveys and Monographs, vol. 170. American Mathematical Society, Providence (2011). MR2778558

    Google Scholar 

  11. Costello, K., Li, S.: Quantum BCOV theory on Calabi-Yau manifolds and the higher genus Bmodel (2011). arXiv:1201.4501 [math.QA]

    Google Scholar 

  12. Douai, A., Sabbah, C.: Gauss-Manin systems, Brieskorn lattices and Frobenius structures, I. In: Proceedings of the International Conference in Honor of Frédéric Pham (Nice, 2002), pp. 1055–1116 (2003)

    Google Scholar 

  13. Douai, A., Sabbah, C.: Gauss-Manin systems, Brieskorn lattices and Frobenius structures, II. In: Frobenius Manifolds. Aspects of Mathematics, vol. E36, pp. 1–18. Vieweg, Wiesbaden (2004)

    Google Scholar 

  14. Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993). Lecture Notes in Mathematics, vol. 1620, pp. 120–348. Springer, Berlin (1996)

    Google Scholar 

  15. Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. (2) 178(1), 1–106 (2013)

    Google Scholar 

  16. Givental, A.B.: A mirror theorem for toric complete intersections. In: Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996). Progress in Mathematics, vol. 160, pp. 141–175. Birkhäuser, Boston (1998)

    Google Scholar 

  17. Givental, A.B.: A tutorial on quantum cohomology. In: Symplectic Geometry and Topology (Park City, UT, 1997). IAS/Park City Mathematics Series, vol. 7, pp. 231–264. American Mathematical Society, Providence (1999)

    Google Scholar 

  18. Givental, A.B.: Gromov-Witten invariants and quantization of quad ratic Hamiltonians. Mosc. Math. J. 1(4), 551–568, 645 (2001). Dedicated to the memory of I. G. Petrovskii on the occasion of his100th anniversary

    Google Scholar 

  19. Givental, A.B.: Symplectic geometry of Frobenius structures. In: Frobenius Manifolds. Aspects of Mathematics, vol. E36, pp. 91–112. Vieweg, Wiesbaden (2004)

    Google Scholar 

  20. He, W., Li, S., Shen, Y., Webb, R.: Landau-Ginzburg mirror symmetry conjecture (2015). arXiv:math.AG/1503.01757

    Google Scholar 

  21. Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms. In: The Modulispace of Curves (Texel Island, 1994). Progress in Mathematics, vol. 129, pp. 165–172. Birkhäuser, Boston (1995)

    Google Scholar 

  22. Kontsevich, M., Soibelman, Y.: Notes on A-algebras, A-categories and non-commutative geometry. In: Homological Mirror Symmetry. Lecture Notes in Physics, vol. 757, pp. 153–219. Springer, Berlin (2009). MR2596638

    Google Scholar 

  23. Li, S.: Calabi-Yau geometry and higher genus mirror symmetry. Thesis, Harvard (2011)

    Google Scholar 

  24. Li, S.: Feynman graph integrals and almost modular forms. Commun. Number Theory and Phys. 6, 129–157 (2012)

    MathSciNet  CrossRef  Google Scholar 

  25. Li, S.: BCOV theory on the elliptic curve and higher genus mirror symmetry (2011). arXiv:1112.4063 [math.QA]

    Google Scholar 

  26. Li, S.: Vertex algebras and quantum master equation (2016). arXiv:1612.01292 [math.QA]

    Google Scholar 

  27. Li, C., Li, S., Saito, K., Shen, Y.: Mirror symmetry for exceptional unimodular singularities. J. Eur. Math. Soc. 19(4), 1189–1229 (2017)

    MathSciNet  CrossRef  Google Scholar 

  28. Li, C., Li, S., Saito, K.: Primitive forms via polyvector fields (2013). arXiv: math.AG/1311.1659

    Google Scholar 

  29. Lian, B.H., Liu, K.F., Yau, S.T.: Mirror principle I. Asian J. Math. 1(4), 729–763 (1997)

    MathSciNet  CrossRef  Google Scholar 

  30. Losev, A., Shadrin, S., Shneiberg, I.: Tautological relations in Hodge field theory. Nucl. Phys. B 786(3), 267–296 (2007)

    MathSciNet  CrossRef  Google Scholar 

  31. Okounkov, A., Pandharipande, R.: Virasoro constraints for target curves. Invent. Math. 163(1), 47–108 (2006)

    MathSciNet  CrossRef  Google Scholar 

  32. Saito, K.: The higher residue pairings \(K_{F}^{(k)}\) for a family of hypersurface singular points. In: Singularities, Part 2. Proceedings of Symposia in Pure Mathematics (Arcata, Calif., 1981), pp. 441–463 (1983)

    Google Scholar 

  33. Saito, K.: Period mapping associated to a primitive form. Publ. Res. Inst. Math. Sci. 19(3), 1231–1264 (1983)

    MathSciNet  CrossRef  Google Scholar 

  34. Saito, M.: On the structure of Brieskorn lattice. Ann. Inst. Fourier (Grenoble) 39(1), 27–72 (1989)

    Google Scholar 

  35. Saito, K.: From primitive form to mirror symmetry (2014). arXiv: math.AG/1408.4208

    Google Scholar 

  36. Saito, M.: On the structure of Brieskorn lattices, II (2013). arXiv: math.AG/1312.6629

    Google Scholar 

  37. Takahashi, A.: Primitive forms, topological LG models coupled to gravity and mirror symmetry (1998). arXiv: math.AG/9802059

    Google Scholar 

  38. Zwiebach, B.: Closed string field theory: quantum action and the Batalin-Vilkovisky master equation. Nucl. Phys. B 390(1), 33–152 (1993)

    MathSciNet  CrossRef  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the organizers and participants of the workshop on B-model aspects of Gromov-Witten theory, and the hospitality of the mathematics department at University of Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Li, S. (2018). Some Classical/Quantum Aspects of Calabi-Yau Moduli. In: Clader, E., Ruan, Y. (eds) B-Model Gromov-Witten Theory. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-94220-9_4

Download citation