Advertisement

Differences Between BPM and ACM Models for Process Execution

  • Alexander AdensamerEmail author
  • David Rueckel
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 319)

Abstract

As the demand for the modeling of knowledge intensive processes grows, so does the necessity to support this task by appropriate models. Adaptive Case Management (ACM) was proposed as appropriate, whereas still confined mostly to theoretical work. This paper compares the execution of BPM process models to ACM models by applying agent based simulations to different processes based on support case handling. The simulation tools applied to the ACM process models were developed in the course of this work. The greater flexibility of ACM models is found to be more effective in processing executions with competent knowledge workers. Another key observation is the possible improvement of average case duration due to parallelization effects.

Keywords

Business process simulation Business process management Adaptive case management Modeling 

References

  1. 1.
    Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput. Stand. Interfaces 34, 124–134 (2012)CrossRefGoogle Scholar
  2. 2.
    Işik, Ö., Mertens, W., Van den Bergh, J.: Practices of knowledge intensive process management: quantitative insights. Bus. Process Manag. J. 19, 515–534 (2013)CrossRefGoogle Scholar
  3. 3.
    Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006).  https://doi.org/10.1007/11837862_18CrossRefGoogle Scholar
  4. 4.
    Slaats, T.: Flexible Process Notations for Cross-organizational Case Management Systems (2015)Google Scholar
  5. 5.
    Desel, J., Erwin, T.: Modeling, simulation and analysis of business processes. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 129–141. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45594-9_9CrossRefGoogle Scholar
  6. 6.
    Swenson, K.D.: Mastering the Unpredictable: how Adaptive Case Management Will Revolutionize the Way That Knowledge Workers get Things Done. Meghan-Kiffer Press, Tampa (2010)Google Scholar
  7. 7.
    Motahari-Nezhad, H.R., Swenson, K.D.: Adaptive case management: overview and research challenges. In: 15th Conference on Business Informatics (CBI) 2013, pp. 264–269. IEEE (2013)Google Scholar
  8. 8.
    Dorst, W.: Adaptive-Case-Management: Leitfaden und Nachschlagewerk (2013)Google Scholar
  9. 9.
    Hauder, M., Pigat, S., Matthes, F.: Research challenges in adaptive case management: a literature review. In: 18th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations 2014. IEEE (2014)Google Scholar
  10. 10.
    Fischer, L. (ed.): How Knowledge Workers Get Things Done: Real-World Adaptive Case Management. Future Strategies, Lighthouse Point (2012)Google Scholar
  11. 11.
    Jansen-Vullers, M., Netjes, M.: Business process simulation–a tool survey. In: Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark (2006)Google Scholar
  12. 12.
    Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: an empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28108-2_37CrossRefGoogle Scholar
  13. 13.
    Debois, S., Hildebrandt, T., Marquard, M., Slaats, T.: The DCR graphs process portal. In: Business Process Management Forum 2016 (2016)Google Scholar
  14. 14.
    Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as distributed dynamic condition response graphs. Electron. Proc. Theor. Comput. Sci. 69, 59–73 (2011)CrossRefGoogle Scholar
  15. 15.
    Hildebrandt, T., Marquard, M., Mukkamala, R.R., Slaats, T.: Dynamic condition response graphs for trustworthy adaptive case management. In: Demey, Y.T., Panetto, H. (eds.) On the Move to Meaningful Internet Systems: OTM 2013 Workshops, pp. 166–171. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41033-8_23CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.WBS AkademieBerlinGermany

Personalised recommendations