Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10900)


We present a formalization of the first half of Bachmair and Ganzinger’s chapter on resolution theorem proving in Isabelle/HOL, culminating with a refutationally complete first-order prover based on ordered resolution with literal selection. We develop general infrastructure and methodology that can form the basis of completeness proofs for related calculi, including superposition. Our work clarifies several of the fine points in the chapter’s text, emphasizing the value of formal proofs in the field of automated reasoning.


Bachmair Literal Selection Refutational Completeness Theorem-proving Process Clause Set 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Christoph Weidenbach discussed Bachmair and Ganzinger’s chapter with us on many occasions and hosted Schlichtkrull at the Max-Planck-Institut in Saarbrücken. Christian Sternagel and René Thiemann answered our questions about IsaFoR. Mathias Fleury, Florian Haftmann, and Tobias Nipkow helped enrich and reorganize Isabelle’s multiset library. Mathias Fleury, Robert Lewis, Mark Summerfield, Sophie Tourret, and the anonymous reviewers suggested many textual improvements.

Blanchette was partly supported by the Deutsche Forschungsgemeinschaft (DFG) project Hardening the Hammer (grant NI 491/14-1). He also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 713999, Matryoshka). Traytel was partly supported by the DFG program Program and Model Analysis (PUMA, doctorate program 1480).


  1. 1.
    Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Aït-Kaci, H., Nivat, M. (eds.) Rewriting Techniques-Resolution of Equations in Algebraic Structures, vol. 2, pp. 1–30. Academic Press (1989)Google Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 19–99. Elsevier and MIT Press (2001)CrossRefGoogle Scholar
  4. 4.
    Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Reason. 52(2), 123–153 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Biendarra, J., et al.: Foundational (co)datatypes and (co)recursion for higher-order logic. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 3–21. Springer, Cham (2017). Scholar
  6. 6.
    Blanchette, J.C., Fleury, M., Lammich, P., Weidenbach, C.: A verified SAT solver framework with learn, forget, restart, and incrementality. J. Autom. Reason. 61(3), 333–366MathSciNetCrossRefGoogle Scholar
  7. 7.
    Blanchette, J.C., Fleury, M., Traytel, D.: Nested multisets, hereditary multisets, and syntactic ordinals in Isabelle/HOL. In: Miller, D. (ed.) FSCD 2017. LIPIcs, vol. 84, pp. 11:1–11:18. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2017)Google Scholar
  8. 8.
    Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formal. Reason. 9(1), 101–148 (2016)MathSciNetGoogle Scholar
  9. 9.
    Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by coinductive methods. J. Autom. Reason. 58(1), 149–179 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Brand, D.: Proving theorems with the modifiction method. SIAM J. Comput. 4(4), 412–430 (1975)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cruanes, S.: Logtk: a logic toolkit for automated reasoning and its implementation. In: Schulz, S., de Moura, L., Konev, B. (eds.) PAAR-2014. EPiC Series in Computing, vol. 31, pp. 39–49. EasyChair (2014)Google Scholar
  12. 12.
    Fleury, M., Blanchette, J.C., Lammich, P.: A verified SAT solver with watched literals using Imperative HOL. In: Andronick, J., Felty, A.P. (eds.) CPP 2018, pp. 158–171. ACM (2018)Google Scholar
  13. 13.
    Hirokawa, N., Middeldorp, A., Sternagel, C., Winkler, S.: Infinite runs in abstract completion. In: Miller, D. (ed.) FSCD 2017. LIPIcs, vol. 84, pp. 19:1–19:16. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2017)Google Scholar
  14. 14.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443. Elsevier and MIT Press (2001)CrossRefGoogle Scholar
  15. 15.
    Nipkow, T.: Teaching Semantics with a proof assistant: no more LSD trip proofs. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 24–38. Springer, Heidelberg (2012). Scholar
  16. 16.
    Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). Scholar
  17. 17.
    Peltier, N.: A variant of the superposition calculus. Archive of Formal Proofs 2016 (2016).
  18. 18.
    Persson, H.: Constructive Completeness of Intuitionistic Predicate Logic—a Formalisation in Type Theory. Licentiate thesis, Chalmers tekniska högskola and Göteborgs universitet (1996)Google Scholar
  19. 19.
    Pierce, B.C.: Lambda, the ultimate TA: using a proof assistant to teach programming language foundations. In: Hutton, G., Tolmach, A.P. (eds.) ICFP 2009, pp. 121–122. ACM (2009)Google Scholar
  20. 20.
    Schlichtkrull, A.: Formalization of the resolution calculus for first-order logic. J. Autom. Reason 61(4), 455–484MathSciNetCrossRefGoogle Scholar
  21. 21.
    Schlichtkrull, A., Blanchette, J.C., Traytel, D., Waldmann, U.: Formalizing Bachmair and Ganzinger’s ordered resolution prover (technical report). Technical report (2018).
  22. 22.
    Shankar, N.: Towards mechanical metamathematics. J. Autom. Reason. 1(4), 407–434 (1985)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 452–468. Springer, Heidelberg (2009). Scholar
  24. 24.
    Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham (2014). Scholar
  25. 25.
    Wand, D.: Polymorphic \(+\) typeclass superposition. In: Schulz, S., de Moura, L., Konev, B. (eds.) PAAR-2014. EPiC Series in Computing, vol. 31, pp. 105–119. EasyChair (2014)Google Scholar
  26. 26.
    Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, pp. 1965–2013. Elsevier and MIT Press (2001)CrossRefGoogle Scholar
  27. 27.
    Wenzel, M.: Isabelle/Isar—a generic framework for human-readable proof documents. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift in Honour of Andrzej Trybulec, Studies in Logic, Grammar, and Rhetoric, vol. 10, no. 23, University of Białystok (2007)Google Scholar
  28. 28.
    Wenzel, M.: Isabelle/jEdit—a prover IDE within the PIDE framework. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 468–471. Springer, Heidelberg (2012). Scholar
  29. 29.
    Zhang, H., Kapur, D.: First-order theorem proving using conditional rewrite rules. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 1–20. Springer, Heidelberg (1988). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DTU Compute, Technical University of DenmarkKongens LyngbyDenmark
  2. 2.Vrije Universiteit AmsterdamAmsterdamThe Netherlands
  3. 3.Max-Planck-Institut für Informatik, Saarland Informatics CampusSaarbrückenGermany
  4. 4.Institute of Information Security, Department of Computer ScienceETH ZürichZurichSwitzerland

Personalised recommendations