Advertisement

Superposition for Lambda-Free Higher-Order Logic

  • Alexander Bentkamp
  • Jasmin Christian Blanchette
  • Simon Cruanes
  • Uwe Waldmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10900)

Abstract

We introduce refutationally complete superposition calculi for intentional and extensional \(\lambda \)-free higher-order logic, two formalisms that allow partial application and applied variables. The calculi are parameterized by a term order that need not be fully monotonic, making it possible to employ the \(\lambda \)-free higher-order lexicographic path and Knuth–Bendix orders. We implemented the calculi in the Zipperposition prover and evaluated them on TPTP benchmarks. They appear promising as a stepping stone towards complete, efficient automatic theorem provers for full higher-order logic.

Notes

Acknowledgment

We are grateful to the maintainers of StarExec for letting us use their service. We want to thank Christoph Benzmüller, Sander Dahmen, Johannes Hölzl, Anders Schlichtkrull, Stephan Schulz, Alexander Steen, Geoff Sutcliffe, Andrei Voronkov, Petar Vukmirović, Daniel Wand, Christoph Weidenbach, and the participants in the 2017 Dagstuhl Seminar on Deduction beyond First-Order Logic for stimulating discussions. We also want to thank Mark Summerfield, Sophie Tourret, and the anonymous reviewers for suggesting several textual improvements to this paper and to the technical report. Bentkamp and Blanchette’s research has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 713999, Matryoshka).

References

  1. 1.
    Andrews, P.B.: Classical type theory. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, pp. 965–1007. Elsevier and MIT Press (2001)CrossRefGoogle Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: A transfinite Knuth–Bendix order for lambda-free higher-order terms. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 432–453. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63046-5_27CrossRefGoogle Scholar
  4. 4.
    Beeson, M.: Lambda logic. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 460–474. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-25984-8_34CrossRefGoogle Scholar
  5. 5.
    Bentkamp, A., Blanchette, J.C., Cruanes, S., Waldmann, U.: Superposition for lambda-free higher-order logic (technical report). Technical report (2018). http://matryoshka.gforge.inria.fr/pubs/lfhosup_report.pdf
  6. 6.
    Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H. (ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp. 215–254. Elsevier, Amsterdam (2014)Google Scholar
  7. 7.
    Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II—a cooperative automatic theorem prover for classical higher-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71070-7_14CrossRefGoogle Scholar
  8. 8.
    Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. Log. Methods Comput. Sci. 12(4:13), 1–52 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formaliz. Reason. 9(1), 101–148 (2016)MathSciNetGoogle Scholar
  10. 10.
    Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 414–420. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38574-2_29CrossRefGoogle Scholar
  11. 11.
    Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recursive path order. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 461–479. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54458-7_27CrossRefGoogle Scholar
  12. 12.
    Bobot, F., Paskevich, A.: Expressing polymorphic types in a many-sorted language. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 87–102. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24364-6_7CrossRefGoogle Scholar
  13. 13.
    Bofill, M., Rubio, A.: Paramodulation with non-monotonic orderings and simplification. J. Autom. Reason. 50(1), 51–98 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Brand, D.: Proving theorems with the modification method. SIAM J. Comput. 4, 412–430 (1975)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31365-3_11CrossRefGoogle Scholar
  16. 16.
    Cruanes, S.: Extending superposition with integer arithmetic, structural induction, and beyond. Ph.D. thesis, École polytechnique (2015)Google Scholar
  17. 17.
    Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 172–188. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66167-4_10CrossRefGoogle Scholar
  18. 18.
    Czajka, Ł.: Improving automation in interactive theorem provers by efficient encoding of lambda-abstractions. In: Avigad, J., Chlipala, A. (eds.) CPP 2016, pp. 49–57. ACM (2016)Google Scholar
  19. 19.
    Dowek, G., Hardin, T., Kirchner, C.: Higher-order unification via explicit substitutions (extended abstract). In: LICS 1995, pp. 366–374. IEEE (1995)Google Scholar
  20. 20.
    Fitting, M.: Types, Tableaus, and Gödel’s God. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  21. 21.
    Gupta, A., Kovács, L., Kragl, B., Voronkov, A.: Extensional crisis and proving identity. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 185–200. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11936-6_14CrossRefzbMATHGoogle Scholar
  22. 22.
    Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2), 81–91 (1950)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Huet, G.P.: A mechanization of type theory. In: Nilsson, N.J. (ed.) IJCAI 1973, pp. 139–146. William Kaufmann, Burlington (1973)Google Scholar
  24. 24.
    Kerber, M.: How to prove higher order theorems in first order logic. In: Mylopoulos, J., Reiter, R. (eds.) IJCAI 1991, pp. 137–142. Morgan Kaufmann, Burlington (1991)Google Scholar
  25. 25.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39799-8_1CrossRefGoogle Scholar
  26. 26.
    Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 61–75. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08587-6_5CrossRefGoogle Scholar
  27. 27.
    Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reason. 40(1), 35–60 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Miller, D.A.: A compact representation of proofs. Stud. Log. 46(4), 347–370 (1987)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45949-9CrossRefzbMATHGoogle Scholar
  30. 30.
    Peltier, N.: A variant of the superposition calculus. Archive of Formal Proofs (2016). https://www.isa-afp.org/entries/SuperCalc.shtml
  31. 31.
    Robinson, J.: Mechanizing higher order logic. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, pp. 151–170. Edinburgh University Press, Edinburgh (1969)Google Scholar
  32. 32.
    Robinson, J.: A note on mechanizing higher order logic. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 121–135. Edinburgh University Press, Edinburgh (1970)Google Scholar
  33. 33.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45221-5_49CrossRefGoogle Scholar
  34. 34.
    Schulz, S., Sutcliffe, G., Urban, J., Pease, A.: Detecting inconsistencies in large first-order knowledge bases. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 310–325. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63046-5_19CrossRefGoogle Scholar
  35. 35.
    Snyder, W., Lynch, C.: Goal directed strategies for paramodulation. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 150–161. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-53904-2_93CrossRefGoogle Scholar
  36. 36.
    Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNAI, vol. 10900, pp. 108–116. Springer, Cham (2018)Google Scholar
  37. 37.
    Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08587-6_28CrossRefGoogle Scholar
  38. 38.
    Sutcliffe, G.: The CADE-26 automated theorem proving system competition–CASC-26. AI Commun. 30(6), 419–432 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sutcliffe, G., Benzmüller, C., Brown, C.E., Theiss, F.: Progress in the development of automated theorem proving for higher-order logic. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 116–130. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02959-2_8CrossRefzbMATHGoogle Scholar
  40. 40.
    Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28717-6_32CrossRefGoogle Scholar
  41. 41.
    Vukmirović, P.: Implementation of lambda-free higher-order superposition. M.Sc. thesis, Vrije Universiteit Amsterdam (2018)Google Scholar
  42. 42.
    Waldmann, U.: Automated reasoning II. Lecture notes, Max-Planck-Institut für Informatik (2016). http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea2-ss16/script-current.pdf
  43. 43.
    Wand, D.: Superposition: types and polymorphism. Ph.D. thesis, Universität des Saarlandes (2017)Google Scholar
  44. 44.
    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 140–145. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02959-2_10CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexander Bentkamp
    • 1
  • Jasmin Christian Blanchette
    • 1
    • 2
    • 3
  • Simon Cruanes
    • 3
    • 4
  • Uwe Waldmann
    • 2
  1. 1.Vrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Max-Planck-Institut für Informatik, Saarland Informatics CampusSaarbrückenGermany
  3. 3.Université de Lorraine, CNRS, Inria, LORIANancyFrance
  4. 4.Aesthetic IntegrationAustinUSA

Personalised recommendations