Cubicle-\(\mathcal {W}\): Parameterized Model Checking on Weak Memory
Conference paper
First Online:
- 2 Citations
- 670 Downloads
Abstract
We present Cubicle-\(\mathcal {W}\), a new version of the Cubicle model checker to verify parameterized systems under weak memory models. Its main originality is to implement a backward reachability algorithm modulo weak memory reasoning using SMT. Our experiments show that Cubicle-\(\mathcal {W}\) is expressive and efficient enough to automatically prove safety of concurrent algorithms, for an arbitrary number of processes, ranging from mutual exclusion to synchronization barriers.
Keywords
Parameterized model checking MCMT SMT Weak memoryReferences
- 1.Cubicle-\(\cal{W}\). http://cubicle.lri.fr/cubiclew/
- 2.Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: The benefits of duality in verifying concurrent programs under TSO. In: CONCUR (2016)Google Scholar
- 3.Abdulla, P.A., Atig, M.F., Chen, Y., Leonardsson, C., Rezine, A.: Memorax, a precise and sound tool for automatic fence insertion under TSO. In: TACAS (2013)CrossRefGoogle Scholar
- 4.Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking without transducers. In: TACAS (2007)Google Scholar
- 5.Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3_17CrossRefzbMATHGoogle Scholar
- 6.Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.: The semantics of power and arm multiprocessor machine code. In: DAMP (2008)Google Scholar
- 7.Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software Verification for weak memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_28CrossRefGoogle Scholar
- 8.Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation, testing, and data mining for weak memory. In: ACM TPLS (2014)CrossRefGoogle Scholar
- 9.Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22(6), 307–309 (1986)MathSciNetCrossRefGoogle Scholar
- 10.Bouajjani, A., Calin, G., Derevenetc, E., Meyer, R.: Lazy tso reachability. In: FASE (2015)Google Scholar
- 11.Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 533–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_29CrossRefzbMATHGoogle Scholar
- 12.Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about networks with many identical finite-state processes. In: PODC (1986)Google Scholar
- 13.Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zaïdi, F.: Cubicle: a parallel SMT-based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_55CrossRefGoogle Scholar
- 14.Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zaidi, F.: Invariants for finite instances and beyond. In: FMCAD (2013)Google Scholar
- 15.Conchon, S., Mebsout, A., Zaïdi, F.: Certificates for parameterized model checking. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 126–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19249-9_9CrossRefGoogle Scholar
- 16.German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3), 675–735 (1992)MathSciNetCrossRefGoogle Scholar
- 17.Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1_3CrossRefGoogle Scholar
- 18.Goeman, H.J.M.: The arbiter: an active system component for implementing synchronizing primitives. Fundam. Inform. 4(3), 517–530 (1981)MathSciNetzbMATHGoogle Scholar
- 19.Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming (2008)Google Scholar
- 20.Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans. Comput. 9, 690–691 (1979)CrossRefGoogle Scholar
- 21.Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_27CrossRefGoogle Scholar
- 22.Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: X86-TSO: A rigorous and usable programmer’s model for x86 multiprocessors. In: CACM (2010)CrossRefGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018