Advertisement

Cubicle-\(\mathcal {W}\): Parameterized Model Checking on Weak Memory

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10900)

Abstract

We present Cubicle-\(\mathcal {W}\), a new version of the Cubicle model checker to verify parameterized systems under weak memory models. Its main originality is to implement a backward reachability algorithm modulo weak memory reasoning using SMT. Our experiments show that Cubicle-\(\mathcal {W}\) is expressive and efficient enough to automatically prove safety of concurrent algorithms, for an arbitrary number of processes, ranging from mutual exclusion to synchronization barriers.

Keywords

Parameterized model checking MCMT SMT Weak memory 

References

  1. 1.
    Cubicle-\(\cal{W}\). http://cubicle.lri.fr/cubiclew/
  2. 2.
    Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: The benefits of duality in verifying concurrent programs under TSO. In: CONCUR (2016)Google Scholar
  3. 3.
    Abdulla, P.A., Atig, M.F., Chen, Y., Leonardsson, C., Rezine, A.: Memorax, a precise and sound tool for automatic fence insertion under TSO. In: TACAS (2013)CrossRefGoogle Scholar
  4. 4.
    Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking without transducers. In: TACAS (2007)Google Scholar
  5. 5.
    Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73368-3_17CrossRefzbMATHGoogle Scholar
  6. 6.
    Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.: The semantics of power and arm multiprocessor machine code. In: DAMP (2008)Google Scholar
  7. 7.
    Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software Verification for weak memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37036-6_28CrossRefGoogle Scholar
  8. 8.
    Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation, testing, and data mining for weak memory. In: ACM TPLS (2014)CrossRefGoogle Scholar
  9. 9.
    Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22(6), 307–309 (1986)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bouajjani, A., Calin, G., Derevenetc, E., Meyer, R.: Lazy tso reachability. In: FASE (2015)Google Scholar
  11. 11.
    Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 533–553. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37036-6_29CrossRefzbMATHGoogle Scholar
  12. 12.
    Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about networks with many identical finite-state processes. In: PODC (1986)Google Scholar
  13. 13.
    Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zaïdi, F.: Cubicle: a parallel SMT-based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31424-7_55CrossRefGoogle Scholar
  14. 14.
    Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zaidi, F.: Invariants for finite instances and beyond. In: FMCAD (2013)Google Scholar
  15. 15.
    Conchon, S., Mebsout, A., Zaïdi, F.: Certificates for parameterized model checking. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 126–142. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19249-9_9CrossRefGoogle Scholar
  16. 16.
    German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3), 675–735 (1992)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14203-1_3CrossRefGoogle Scholar
  18. 18.
    Goeman, H.J.M.: The arbiter: an active system component for implementing synchronizing primitives. Fundam. Inform. 4(3), 517–530 (1981)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming (2008)Google Scholar
  20. 20.
    Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans. Comput. 9, 690–691 (1979)CrossRefGoogle Scholar
  21. 21.
    Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 391–407. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03359-9_27CrossRefGoogle Scholar
  22. 22.
    Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: X86-TSO: A rigorous and usable programmer’s model for x86 multiprocessors. In: CACM (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LRI (CNRS & University Paris-Sud)Université Paris-SaclayOrsayFrance
  2. 2.Inria, Université Paris-SaclayPalaiseauFrance

Personalised recommendations