Beyond Imaging - Interactive Tabletop System for Tomographic Data Visualization and Analysis

  • Mikołaj Woźniak
  • Aleksandra Polak-SopińskaEmail author
  • Andrzej Romanowski
  • Krzysztof Grudzień
  • Zbigniew Chaniecki
  • Aleksandra Kowalska
  • Magdalena Wróbel-Lachowska
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 793)


This paper presents an innovative endeavour towards more efficient and convenient analysis of large, complicated numerical datasets, such as the results gathered through electric capacitance process tomography. The proposed solution employs the approach of utilising interactive tangible displays for more efficient and appealing data visualisation. The ultimate goal was to deliver a tool which could not only enhance the analyst’s performance, but also enable deriving supplementary observations and conclusions. The objective was obtained through implementing the system onto the tabletop display, which may be operated as an interactive table or a desktop touchscreen. The solution was tested in action through the series of industrial task experiments, to be completed using various setups of the system. The results of the post-exercise surveys show that the best performance is obtained using the inclined tabletop display. The classic table approach was rated as relatively inconvenient, while providing fair effectiveness. The seated-user desktop display was rated to be neither comfortable nor satisfactorily functional.


Electric capacity tomography ECT Data analysis Data visualization Tangible devices Interactive displays Ergonomic work setups Human-Machine interaction 


  1. 1.
    Sankowski, D., Sikora, J.: Electrical Capacitance Tomography: Theoretical Basis and Applications. Instytut Elektrotechniki, Warsaw (2010)Google Scholar
  2. 2.
    Wang, M.: Industrial Tomography: Systems and Applications. Woodhead Publishing, Elsevier (2015)Google Scholar
  3. 3.
    Filipowicz, S.F., Rymarczyk, T.: Measurement methods and image reconstruction in electrical impedance tomography. Przeglad Elektrotechniczny 88(6), 247–250 (2012)Google Scholar
  4. 4.
    Fidos, H., Jaworski, T., Nowakowski, J., Sankowski, D., Wajman, R., Fiderek, P., Banasiak, R.: Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination. Measur. Sci. Technol. 24(6), 065302 (2013)CrossRefGoogle Scholar
  5. 5.
    Rymarczyk, T.: Using electrical impedance tomography to monitoring flood banks. Int. J. Appl. Electromagn. Mech. 45, 489–494 (2014)Google Scholar
  6. 6.
    Fiderek, P., Kucharski, J., Wajman, R.: Fuzzy inference for two-phase gas-liquid flow type evaluation based on raw 3D ECT measurement data. Flow Meas. and Instrum. 54, 88–96 (2017)CrossRefGoogle Scholar
  7. 7.
    Romanowski, A., Skuza, M., Wozniak, P., Grudzien, K., Chaniecki, Z.: Big data computational environment for tomography measurement data. In: Process Tomography WCIPT7, Poland (2013)Google Scholar
  8. 8.
    Watzenig, D., Fox, C.: A review of statistical modelling and inference for electrical capacitance tomography. Meas. Sci. Technol. 20(5), 052002 (2009)CrossRefGoogle Scholar
  9. 9.
    Mazza, R.: Introduction to information visualisation. In: Resources of Faculty of Communication Sciences, University of Lugano (2004)Google Scholar
  10. 10.
    Grudzień, K.: Visualization system for large scale silo flow monitoring based on ECT technique. IEEE Sens. J. 17(24), 8242–8250 (2017)CrossRefGoogle Scholar
  11. 11.
    Jelliti, I., Romanowski, A., Grudzień, K.: Design of crowdsourcing system for analysis of gravitational flow using x-ray visualization. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the 2016 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 8, pp. 1613–1619. IEEE (2016)Google Scholar
  12. 12.
    Mosorov, V.: Flow pattern tracing for mass flow rate measurement in pneumatic conveying using twin plane electrical capacitance tomography. Part. Part. Syst. Charact. 25(3), 259–265 (2008)CrossRefGoogle Scholar
  13. 13.
    Jaworski, A.J., Dyakowski, T.: Application of electrical capacitance tomography for measurement of gas-solids flow characteristics in a pneumatic conveying system. Meas. Sci. Technol. 12(8), 1109 (2001)CrossRefGoogle Scholar
  14. 14.
    McCormick, J.: Antropotechnika: przystosowanie konstrukcji maszyn i urządzeń do człowieka, pp. 493–496. Wydawnictwo Naukowo-Techniczne, Warszawa (1964)Google Scholar
  15. 15.
    Ward, M.O., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications. CRC Press, Natick (2010)zbMATHGoogle Scholar
  16. 16.
    Schmidt, S., Nacenta, M.A., Dachselt, R., Carpendale, S.: A set of multi-touch graph interaction techniques. In: ACM International Conference on Interactive Tabletops and Surfaces (ITS 2010). ACM, New York (2010)Google Scholar
  17. 17.
    Szafarz, J., Woźniak, M., Romanowski, A., Grudzien, K., Chaniecki, Z.: The design and implementation of interactive visualisation system for ECT data analysis, In: IIPhDW2017, Łódź (2017)Google Scholar
  18. 18.
    Müller-Tomfelde, C., Fjeld, M.: Tabletops: interactive horizontal displays for ubiquitous computing. Computer 45(2), 78–81 (2012)CrossRefGoogle Scholar
  19. 19.
    Hart, S.G.:. NASA-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society 50th Annual Meeting, pp. 904–908. HFES, Santa Monica (2006)Google Scholar
  20. 20.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task load index): results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload. North Holland Press, Amsterdam (1988)Google Scholar
  21. 21.
    EN 1005-4 Safety of machinery - human physical performance - part 4: evaluation of working postures and movements in relation to machineryGoogle Scholar
  22. 22.
    ISO 14738:2002 Safety of machinery – Anthropometric requirements for the design of workstations at machineryGoogle Scholar
  23. 23.
    ISO 9241-5:1998 Ergonomic requirements for office work with visual display terminals (VDTs) – Part 5: Workstation layout and postural requirementsGoogle Scholar
  24. 24.
    Chen, C., Wozniak, P.W., Romanowski, A., Obaid, M., Jaworski, T., Kucharski, J., Grudzien, K., Zhao, S., Fjeld, M.: Using crowdsourcing for scientific analysis of industrial tomographic images. ACM Trans. Intell. Syst. Technol. 7(4), 1–25 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Mikołaj Woźniak
    • 1
  • Aleksandra Polak-Sopińska
    • 2
    Email author
  • Andrzej Romanowski
    • 1
  • Krzysztof Grudzień
    • 1
  • Zbigniew Chaniecki
    • 1
  • Aleksandra Kowalska
    • 1
  • Magdalena Wróbel-Lachowska
    • 2
  1. 1.Institute of Applied Computer ScienceLodz University of TechnologyLodzPoland
  2. 2.Faculty of Management and Production EngineeringLodz University of TechnologyLodzPoland

Personalised recommendations