Skip to main content

Generalized Continua and Phase-Field Models: Application to Crystal Plasticity

  • Chapter
  • First Online:
Mesoscale Models

Abstract

Three continuum field theories are presented that account for the size-dependent behaviour of materials. The micromorphic medium is endowed with microdeformation degrees of freedom that describe the rotation and distortion of a triad of microstructural directions, like crystallographic lattice directions. It is a very general framework that can be specialized to strain gradient plasticity theory dedicated to the modelling of plastic events in metals and alloys. Both frameworks are developed here in the special case of crystal plasticity as a complete example of transition from micro-physical phenomena to continuum macro-modelling. Finally the phase field method is introduced in this landscape as a continuum modelling approach to the motion of phase boundaries and interfaces driven by thermodynamics and mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    and in fact of small gradient of elastic strain.

References

  • G. Abrivard, E.P. Busso, S. Forest, B. Appolaire, Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part I: theory and numerical implementation. Philos. Mag. 92, 3618–3642 (2012a)

    Google Scholar 

  • G. Abrivard, E.P. Busso, S. Forest, B. Appolaire, Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part II: application to recrystallisation. Philos. Mag. 92 3643–3664 (2012b)

    Google Scholar 

  • E.C. Aifantis, The physics of plastic deformation. Int. J. Plast. 3, 211–248 (1987)

    Article  MATH  Google Scholar 

  • H. Altenbach, G.A. Maugin, V. Erofeev, Mechanics of Generalized Continua. Advanced Structured Materials, vol. 7 (Springer, Berlin, 2011)

    Google Scholar 

  • K. Ammar, B. Appolaire, G. Cailletaud, S. Forest, Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media. Eur. J. Comput. Mech. 18, 485–523 (2009)

    Article  MATH  Google Scholar 

  • K. Ammar, B. Appolaire, G. Cailletaud, S. Forest, Phase field modeling of elasto-plastic deformation induced by diffusion controlled growth of a misfitting spherical precipitate. Philos. Mag. Lett. 91, 164–172 (2011)

    Article  Google Scholar 

  • K. Ammar, B. Appolaire, S. Forest, M. Cottura, Y. Le Bouar, A. Finel, Modelling inheritance of plastic deformation during migration of phase boundaries using a phase field method. Meccanica 49, 2699–2717 (2014). https://doi.org/10.1007/s11012-014-0011-1

    Article  MathSciNet  MATH  Google Scholar 

  • B. Appolaire, E. Aeby-Gautier, J.D. Teixeira, M. Dehmas, S. Denis, Non-coherent interfaces in diffuse interface models. Philos. Mag. 90, 461–483 (2010)

    Article  Google Scholar 

  • R.J. Asaro, Elastic–plastic memory and kinematic hardening. Acta Metall. 23, 1255–1265 (1975)

    Article  Google Scholar 

  • R.J. Asaro, V.A. Lubarda, Mechanics of Solids and Materials (University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  • M.F. Ashby, The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)

    Article  Google Scholar 

  • V.L. Berdichevsky, On thermodynamics of crystal plasticity. Scr. Mater. 54, 711–716 (2006)

    Article  Google Scholar 

  • J. Besson, G. Cailletaud, J.-L. Chaboche, S. Forest, M. Blétry, Non-linear Mechanics of Materials. Series: Solid Mechanics and Its Applications, vol. 167 (Springer, New York, 2009), 433 p. ISBN: 978-90-481-3355-0

    Google Scholar 

  • A. Bösch, H. Müller-Krumbhaar, O. Shochet, Phase-field models for moving boundary problems: controlling metastability and anisotropyi. Z. Phys. 97, 367–377 (1995)

    Article  Google Scholar 

  • E.P. Busso, G. Cailletaud, On the selection of active slip systems in crystal plasticity. Int. J. Plast. 21, 2212–2231 (2005)

    Article  MATH  Google Scholar 

  • J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Google Scholar 

  • J.W. Cahn, F. Larché, A simple model for coherent equilibrium. Acta Metall. 32, 1915–1923 (1984)

    Article  Google Scholar 

  • P. Cermelli, M.E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539–1568 (2001)

    Article  MATH  Google Scholar 

  • H.J. Chang, N.M. Cordero, C. Déprés, M. Fivel, S. Forest, Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel. Arch. Appl. Mech. 86, 21–38 (2016). https://doi.org/10.1007/s00419-015-1099-z

    Article  Google Scholar 

  • B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Conti, M. Ortiz, Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal. 176, 103–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • N.M. Cordero, A. Gaubert, S. Forest, E.P. Busso, F. Gallerneau, S. Kruch, Size effects in generalised continuum crystal plasticity for two-phase laminates. J. Mech. Phys. Solids 58, 1963–1994 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • N.M. Cordero, S. Forest, E.P. Busso, S. Berbenni, M. Cherkaoui, Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals. Commun. Math. Sci. 52, 7–13 (2012)

    Article  Google Scholar 

  • M. Cottura, Y. Le Bouar, A. Finel, B. Appolaire, K. Ammar, S. Forest, A phase field model incorporating strain gradient viscoplasticity: application to rafting in Ni-base superalloys. J. Mech. Phys. Solids 60, 1243–1256 (2012)

    Article  MathSciNet  Google Scholar 

  • M. Cottura, B. Appolaire, A. Finel, Y. Le Bouar, Plastic relaxation during diffusion-controlled growth of widmanstätten plates. Scr. Mater. 108, 117–121 (2015). https://doi.org/10.1016/j.scriptamat.2015.06.032

    Article  Google Scholar 

  • S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (Dover, North Holland, 1962–1984)

    Google Scholar 

  • V. de Rancourt, Odelling the oxidation of polycristalline austenitic stainless steels using a phase field approach coupled with mechanics. PhD, Mines ParisTech (2015)

    Google Scholar 

  • V. de Rancourt, B. Appolaire, S. Forest, K. Ammar, Homogenization of viscoplastic constitutive laws within a phase field approach. J. Mech. Phys. Solids 88, 35–48 (2016). https://doi.org/10.1016/j.jmps.2015.12.026

    Article  MathSciNet  Google Scholar 

  • C. Déprés, C.F. Robertson, M.C. Fivel, Low-strain fatigue in aisi 316l steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles i. dislocation microstructures and mechanical behaviour. Philos. Mag. 84(22), 2257–2275 (2004). https://doi.org/10.1080/14786430410001690051

    Article  Google Scholar 

  • W. Dreyer, W.H. Müller, A study of the coarsening in tin/lead solders. Int. J. Solids Struct. 37, 3841–3871 (2000)

    Article  MATH  Google Scholar 

  • A. Durga, P. Wollants, N. Moelans, Evaluation of interfacial excess contributions in different phase-field models for elastically inhomogeneous systems. Model. Simul. Mater. Sci. Eng. 21, 055018 (2013)

    Article  Google Scholar 

  • J.D. Embury, A. Deschamps, Y. Brechet, The interaction of plasticity and diffusion controlled precipitation reactions. Scr. Mater. 49, 927–932 (2003)

    Article  Google Scholar 

  • A.C. Eringen, E.S. Suhubi, Nonlinear theory of simple microelastic solids. Int. J. Eng. Sci. 2, 189–203, 389–404 (1964)

    Google Scholar 

  • B. Fedelich, A microstructural model for the monotonic and the cyclic mechanical behavior of single crystals of superalloys at high temperatures. Int. J. Mech. Sci. 18, 1–49 (2002)

    MATH  Google Scholar 

  • A. Finel, Y. Le Bouar, A. Gaubert, U. Salman, Phase field methods: Microstructures, mechanical properties and complexity. C. R. Phys. 11, 245–256 (2010)

    Article  Google Scholar 

  • N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  MATH  Google Scholar 

  • S. Forest, Some links between cosserat, strain gradient crystal plasticity and the statistical theory of dislocations. Philos. Mag. 88, 3549–3563 (2008)

    Article  Google Scholar 

  • S. Forest, The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE J. Eng. Mech. 135, 117–131 (2009)

    Article  Google Scholar 

  • S. Forest, Generalized continuum modelling of crystal plasticity, in ed. by C. Sansour, S. Skatulla. Generalized Continua and Dislocation Theory. CISM International Centre for Mechanical Sciences, Courses and Lectures, vol. 537 (Springer, Berlin, 2012a), pp. 181–287

    Chapter  MATH  Google Scholar 

  • S. Forest, Micromorphic media, in ed. by H. Altenbach, V. Eremeyev, Generalized Continua – from the Theory to Engineering Applications. CISM International Centre for Mechanical Sciences, Courses and Lectures, vol. 541 (Springer, Berlin, 2012b), pp. 249–300

    Google Scholar 

  • S. Forest, N. Guéninchault, Inspection of free energy functions in gradient crystal plasticity. Acta Mech. Sinica 29, 763–772 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Forest, R. Sedláček, Plastic slip distribution in two–phase laminate microstructures: dislocation–based vs. generalized–continuum approaches. Philos. Mag. A 83, 245–276 (2003)

    Article  Google Scholar 

  • S. Forest, R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  • S. Forest, R. Sievert, Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Forest, K. Ammar, B. Appolaire, N.M. Cordero, A. Gaubert, Micromorphic approach to crystal plasticity and phase transformation, in J. Schroeder, K. Hackl, Plasticity and Beyond. CISM International Centre for Mechanical Sciences, Courses and Lectures, vol. 550 (Springer, New York, 2014), pp. 131–198

    Chapter  MATH  Google Scholar 

  • F. François, A. Pineau, A. Zaoui, Mechanical Behaviour of Materials. Volume 1: Micro and Macroscopic Constitutive Behaviour. Solid Mechanics and its Applications, vol. 180 (Springer, New York, 2012)

    Google Scholar 

  • T. Frolov, Y. Mishin, Thermodynamics of coherent interfaces under mechanical stresses. I. Theory. Phys. Rev. B 85, 224106 (2012). https://doi.org/10.1103/PhysRevB.85.224106

    Article  Google Scholar 

  • A. Gaubert, A. Finel, Y. Le Bouar, G. Boussinot, Viscoplastic phase field modellling of rafting in ni base superalloys, in Continuum Models and Discrete Systems CMDS11 (Mines Paris Les Presses, 2008), pp. 161–166

    Google Scholar 

  • A. Gaubert, Y. Le Bouar, A. Finel, Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys. Philos. Mag. 90, 375–404 (2010)

    Article  Google Scholar 

  • M.G.D. Geers, R.H.J. Peerlings, M.A. Peletier, L. Scardia, Asymptotic behaviour of a pile–up of infinite walls of edge dislocations. Arch. Ration. Mech. Anal. 209, 495–539 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Germain, The method of virtual power in continuum mechanics. Part 2 : Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MATH  Google Scholar 

  • P. Germain, Q.S. Nguyen, P. Suquet, Continuum thermodynamics. J. Appl. Mech. 50, 1010–1020 (1983)

    Article  MATH  Google Scholar 

  • P.A. Geslin, B. Appolaire, A. Finel, Investigation of coherency loss by prismatic punching with a nonlinear elastic model. Acta Mater. 71, 80–88 (2014)

    Article  Google Scholar 

  • I. Groma, F.F. Csikor, M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51, 1271–1281 (2003)

    Article  Google Scholar 

  • I. Groma, G. Györgyi, B. Kocsis, Dynamics of coarse grain grained dislocation densities from an effective free energy. Philos. Mag. 87, 1185–1199 (2007)

    Article  Google Scholar 

  • X.H. Guo, S.Q. Shi, X.Q. Ma, Elastoplastic phase field model for microstructure evolution. Appl. Phys. Lett. 87(22), 221910 (2005). https://doi.org/10.1063/1.2138358

    Article  Google Scholar 

  • M.E. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin, A gradient theory of single–crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin, L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Han, B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis (Springer, New York, 2013)

    Book  MATH  Google Scholar 

  • D.E. Hurtado, M. Ortiz, Finite element analysis of geometrically necessary dislocations in crystal plasticity. Int. J. Numer. Methods Eng. 93(1), 66–79 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • S.W. Husain, M.S. Ahmed, I. Qamar, Dendritic morphology observed in the solid-state precipitation in binary alloys. Metal. Mater. Trans. A 30, 1529–1534 (1999)

    Article  Google Scholar 

  • W.C. Johnson, On the inapplicability of Gibbs phase rule to coherent solids. Metall. Trans. A 18, 1093–1097 (1987)

    Article  Google Scholar 

  • R. Kametani, K. Kodera, D. Okumura, N. Ohno, Implicit iterative finite element scheme for a strain gradient crystal plasticity model based on self-energy of geometrically necessary dislocations. Commun. Math. Sci. 53(1), 53–59 (2012)

    Article  Google Scholar 

  • S.G. Kim, W.T. Kim, T. Suzuki, Phase-field model for binary alloys. Phys. Rev. E 60, 7186–7197 (1999)

    Article  Google Scholar 

  • P.H. Leo, R.F. Sekerka, The effect of elastic fields on the morphological stability of a precipitate grown from solid solution. Acta Metal. 37, 3139–3149 (1989)

    Article  Google Scholar 

  • J. Mandel, Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct. 9, 725–740 (1973)

    Article  MATH  Google Scholar 

  • G.A. Maugin, Thermomechanics of Plasticity and Fracture (Cambridge University Press, Cambridge, 1992)

    Book  MATH  Google Scholar 

  • G.A. Maugin, Thermomechanics of Nonlinear Irreversible Behaviors (World Scientific, Singapore, 1999)

    Book  MATH  Google Scholar 

  • G.A. Maugin, A.V. Metrikine, Mechanics of Generalized Continua, One Hundred Years After the Cosserats. Advances in Mechanics and Mathematics, vol. 21 (Springer, New York, 2010)

    Google Scholar 

  • S.D. Mesarovic, R. Baskaran, A. Panchenko, Thermodynamic coarsening of dislocation mechanics and the size-dependent continuum crystal plasticity. J. Mech. Phys. Solids 58(3), 311–329 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • S.D. Mesarovic, S. Forest, J.P. Jaric, Size-dependent energy in crystal plasticity and continuum dislocation models. Proc. R. Soc. A 471, 20140868 (2015). https://doi.org/10.1098/rspa.2014.0868

    Article  MathSciNet  MATH  Google Scholar 

  • C. Miehe, S. Mauthe, F.E. Hildebrand, Variational gradient plasticity at finite strains. Part III: local-global updates and regularization techniques in multiplicative plasticity for single crystals. Comput. Methods Appl. Mech. Eng. 268, 735–762 (2014)

    MATH  Google Scholar 

  • R.D. Mindlin, Micro–structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • R.D. Mindlin, Second gradient of strain and surface–tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  • J. Mosler, O. Shchyglo, H. Montazer Hojjat, A novel homogenization method for phase field approaches based on partial rank-one relaxation. J. Mech. Phys. Solids 68, 251–266 (2014). https://doi.org/10.1016/j.jmps.2014.04.002

    Article  MathSciNet  MATH  Google Scholar 

  • I. Müller, Thermodynamics of mixtures and phase field theory. Int. J. Solids Struct. 38, 1105–1113 (2001)

    Article  MATH  Google Scholar 

  • W.W. Mullins, R.F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323–329 (1963). https://doi.org/10.1063/1.1702607

    Article  Google Scholar 

  • J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)

    Article  Google Scholar 

  • N. Ohno, D. Okumura, Higher-order stress and grain size effects due to self energy of geometrically necessary dislocations. J. Mech. Phys. Solids 55, 1879–1898 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • N. Ohno, D. Okumura, Grain–size dependent yield behavior under loading, unloading and reverse loading. Int. J. Mod. Phys. B 22, 5937–5942 (2008)

    Article  Google Scholar 

  • M. Ortiz, E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • H. Proudhon, W.J. Poole, X. Wang, Y. Bréchet, The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA611. Philos. Mag. 88, 621–640 (2008)

    Article  Google Scholar 

  • J. Qu, M. Cherkaoui, Fundamentals of Micromechanics of Solids (John Wiley and Sons Inc, Hoboken, 2006)

    Google Scholar 

  • B.D. Reddy, C. Wieners, B. Wohlmuth, Finite element analysis and algorithms for single-crystal strain-gradient plasticity. Int. J. Numer. Methods Eng. 90(6), 784–804 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Spatschek, B. Eidel, Driving forces for interface kinetics and phase field models. Int. J. Solids Struct. 50, 2424–2436 (2013)

    Article  Google Scholar 

  • I. Steinbach, Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17(7), 073001 (2009)

    Article  Google Scholar 

  • I. Steinbach, M. Apel, Multi phase field model for solid state transformation with elastic strain. Physica D 217(2), 153–160 (2006)

    Article  MATH  Google Scholar 

  • P. Steinmann, Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int. J. Eng. Sci. 34, 1717–1735 (1996)

    Article  MATH  Google Scholar 

  • R.E. Stoltz, R.M. Pelloux, Cyclic deformation and Bauschinger effect in Al–Cu–Mg alloys. Scr. Metall. 8, 269–276 (1974)

    Article  Google Scholar 

  • R.E. Stoltz, R.M. Pelloux, The Bauschinger effect in precipitation strengthened aluminum alloys. Metall. Trans. A 7, 1295–1306 (1976)

    Article  Google Scholar 

  • B. Svendsen, S. Bargmann, On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J. Mech. Phys. Solids 58(9), 1253–1271 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Taillard, A. Pineau, Room temperature tensile properties of Fe-19wt.% Cr alloys precipitation hardened by the intermetallic compound NiAl. Mater. Sci. Eng. 56, 219–231 (1982)

    Article  Google Scholar 

  • J. Tiaden, B. Nestler, H.J. Diepers, I. Steinbach, The multiphase-field model with an integrated concept for modelling solute diffusion. Physica D 115, 73–86 (1998)

    Article  MATH  Google Scholar 

  • R.L.J.M. Ubachs, P.J.G. Schreurs, M.G.D. Geers, Phase field dependent viscoplastic behaviour of solder alloys. Int. J. Solids Struct. 42, 2533–2558 (2005)

    Article  MATH  Google Scholar 

  • T.T. Uehara, T. Tsujino, N. Ohno, Elasto-plastic simulation of stress evolution during grain growth using a phase field model. J. Cryst. Growth 300, 530–537 (2007)

    Article  Google Scholar 

  • A. Villani, E.P. Busso, K. Ammar, S. Forest, M.G.D. Geers, A fully coupled diffusional-mechanical formulation: numerical implementation, analytical validation, and effects of plasticity on equilibrium. Arch. Appl. Mech. 84, 1647–1664 (2014)

    Article  MATH  Google Scholar 

  • Y. Wang, A.G. Khachaturyan, J.W. Jr Morris, Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap. Acta Metall. Mater. 41, 279–296 (1993)

    Article  Google Scholar 

  • S. Wulfinghoff, T. Böhlke, Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 468(2145), 2682–2703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Wulfinghoff, E. Bayerschen, T. Böhlke, A gradient plasticity grain boundary yield theory. Int. J. Plast. 51, 33–46 (2013)

    Article  Google Scholar 

  • S. Wulfinghoff, S. Forest, T. Böhlke, Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures. J. Mech. Phys. Solids 79, 1–20 (2015). https://doi.org/10.1016/j.jmps.2015.02.008

    Article  MathSciNet  MATH  Google Scholar 

  • A. Zaoui, Continuum micromechanics: survey. ASCE J. Eng. Mech. 128, 808–816 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Forest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forest, S., Ammar, K., Appolaire, B., Rancourt, V.d., Wulfinghoff, S. (2019). Generalized Continua and Phase-Field Models: Application to Crystal Plasticity. In: Mesarovic, S., Forest, S., Zbib, H. (eds) Mesoscale Models. CISM International Centre for Mechanical Sciences, vol 587. Springer, Cham. https://doi.org/10.1007/978-3-319-94186-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94186-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94185-1

  • Online ISBN: 978-3-319-94186-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics