Skip to main content

(Ground) Ice in the Proglacial Zone

  • Chapter
  • First Online:
Book cover Geomorphology of Proglacial Systems

Part of the book series: Geography of the Physical Environment ((GEOPHY))

Abstract

In mid-latitude mountains, most of the valley glaciers currently experience distinct and enhanced volume and area loss. In parallel with the glacier retreat, the related proglacial areas enlarge, leaving unconsolidated sediments and ground ice of different origins and thus forming a transitional landscape , as developing from a glacial to a non-glacial environment. The erosion, transport and accumulation of sediment in these proglacial areas are characterized by high spatio-temporal dynamics, which are typically highest in the direct glacier forefield and become more inactive with increasing distance to the glacier front. Glacial, periglacial, fluvial and gravitational processes occur and highly interact in space and time. The glacial history of recently deglaciated zones influences the complex thermal regime of the subsurface and determines the current ground ice occurrence. Besides the glacio-fluvial processes, low-temperature conditions, as well as the occurrence of ground ice, are the most effective drivers for geomorphic dynamics and related landform evolution in these proglacial areas. A deeper knowledge of ongoing processes as well as of the amounts of sediment and ground ice is decisive to assess the availability of unconsolidated sediment for potential hazardous processes (e.g. debris flows) and the availability of water from ground ice bodies. There is an increasing need for high-resolution data (e.g. repeated topographic data) of proglacial areas as well as the systematic monitoring of these environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackert RPJ (1998) A rock glacier/debris-covered glacier system at Galena Creek, Absaroka Mountains, Wyoming. Geogr Ann A 80:267–276

    Article  Google Scholar 

  • Arenson L, Hoelzle M, Springman S (2002) Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. Permafrost Periglac Process 13:117–135

    Article  Google Scholar 

  • Arenson LU, Colgan W, Marshall HP (2014) Physical, thermal, and mechanical properties of snow, ice and permafrost. In: Haeberli W, Whiteman C (eds) Snow and ice-related hazards, risks, and disasters. Elsevier, Amsterdam, pp 35–75

    Google Scholar 

  • Ballantyne CK (2002) Paraglacial Geomorphology. Quatern Sci Rev 21:1935–2017

    Article  Google Scholar 

  • Bast A (2009) Kleinräumige Permafrostverbreitung in einem alpinen Gletschervorfeld, Val Muragl/Oberengadin, Schweiz. Diplomarbeit Thesis, Universität Würzburg, 271 pp

    Google Scholar 

  • Bast A, Kneisel C (2011) The surface in the subsurface?—Towards small-scale permafrost distribution and quasi-3D resistivity imaging. Geophys Res Abstr 13

    Google Scholar 

  • Baumhauer R, Winkler S (2014): Glazialgeomorphologie: Formung der Landoberfläche durch Gletscher. Borntraeger

    Google Scholar 

  • Bearth P (1980) Erläuterungen zu Atlasblatt 71 (1308 St. Niklaus) des „Geologischen Atlas der Schweiz 1:25.000“. Schweizerische Geologische Kommission. Zürich

    Google Scholar 

  • Benn DI, Evans DJA (2010) Glaciers and glaciation. Hodder Arnold Publication, 802 pp

    Google Scholar 

  • Berthling IT (2011) Beyond confusion: rock glaciers as cryo-conditioned landforms. Geomorphology 131(3–4)

    Article  Google Scholar 

  • Bosson JB, Lambiel C (2016) Internal structure and current evolution of very small debris-covered glacier systems located in alpine permafrost environments. Frontiers Earth Sci 4(39)

    Google Scholar 

  • Bosson JB, Deline P, Bodin X, Schoeneich P, Baron L, Gardent M, Lambiel C (2015) The influence of ground ice distribution on geomorphic dynamics since the Little Ice Age in proglacial areas of two cirque glacier systems. Earth Surf Proc Land 40:666–680

    Article  Google Scholar 

  • Carrivick JL, Smith MW, Carrivick DM (2015) Terrestrial laser scanning to deliver high-resolution topography of the upper Tarfala valley, Arctic Sweden. GFF 137:4. https://doi.org/10.1080/11035897.2015.1037569

    Article  Google Scholar 

  • Chiarle M, Iannotti S, Mortara G, Deline P (2007) Recent debris flow occurrences associated with glaciers in the Alps. Glob Planet Change 56:123–136

    Article  Google Scholar 

  • Church M, Ryder JM (1972) Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. GSA Bull 83(10):3059–3072

    Article  Google Scholar 

  • Cossart E, Mercier D, Decaulne A, Feuillet T (2013) An overview of the consequences of paraglacial landsliding on deglaciated mountain slopes: typology, timing and contribution to cascading fluxes. Quaternaire 24(1):13–24

    Article  Google Scholar 

  • Cuffey K, Paterson WSB (2010) The physics of glaciers. Academic Press, 704 pp

    Google Scholar 

  • Curry AM, Cleasby V, Zukowskyj P (2006) Paraglacial response of steep, sediment-mantled slopes to post-‘Little Ice Age’ glacier recession in the central Swiss Alps. J Quat Sci 21(3):211–225

    Article  Google Scholar 

  • Deline P, Gruber S, Delaloye R, Fischer L, Geertsema M, Giardino M, Hasler A, Kirkbride M, Krautblatter M, Magnin F, McColl S, Ravanel L, Schoeneich P (2014) Ice loss and slope stability in high-mountain regions. In: Haeberli W, Whiteman C (eds) Snow and ice-related hazards, risks, and disasters. Elsevier, Amsterdam, pp 35–75

    Google Scholar 

  • Dusik J-M, Leopold M, Heckmann T, Haas F, Hilger L, Morche D, Neugrig F, Brecht B (2015) Influence of glacier advance on the development of the multipart Riffeltal rock glacier, Central Austrian Alps. Earth Surf Proc Land 40(7):965–980

    Article  Google Scholar 

  • Eichel J, Krautblatter M, Schmidtlein S, Dikau R (2013) Biogeomorphic interactions in the Turtmann glacier forefield, Switzerland. Geomorphology 201:98–110

    Article  Google Scholar 

  • French HM (2013) The periglacial environment. Wiley

    Google Scholar 

  • Grove JM (2004) Little ice ages: ancient and modern. Vol. I + II, 2nd edn. Routledge, London and New York

    Google Scholar 

  • Haeberli W (1973) Die Basis-Temperatur der winterlichen Schneedecke als möglicher Indikator für die Verbreitung von Permafrost. Z Gletscherk Glazialgeol 9:221–227

    Google Scholar 

  • Haeberli W (1983) Permafrost–glacier relationships in the Swiss Alps—today and in the past. In: Proceedings of the fourth international conference on permafrost. National Academy Press, Washington, DC, Fairbanks, pp 415–420

    Google Scholar 

  • Haeberli W (2005) Investigating glacier-permafrost relationships in high-mountain areas: historical background, selected examples and research needs. Glaciers and Permafrost, In Cryospheric Systems

    Google Scholar 

  • Haeberli W, Schaub Y, Huggel C (2016) Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciated mountain ranges

    Google Scholar 

  • Harris SA, Pedersen DE (1998) Thermal regimes beneath coarse blocky materials. Permafrost Periglac Process 9:107–120

    Article  Google Scholar 

  • Huss M, Zemp M, Joerg PC, Salzmann N (2014) High uncertainty in 21st century runoff projections from glacierized basins. J Hydrol 510:35–48

    Article  Google Scholar 

  • Joerg PC, Morsdorf F, Zemp M (2012) Uncertainty assessment of multi-temporal airborne laser scanning data: A case study on an Alpine glacier. Remote Sens Environ 127:118–129

    Article  Google Scholar 

  • Juliussen H, Humlum O (2008) Thermal regime of openwork block fields on the mountains Elgåhogna and Sølen, Central-Eastern Norway. Permafrost Periglac Process 19:1–18

    Article  Google Scholar 

  • Kääb A, Kneisel C (2006) Permafrost creep within a recently deglaciated glacier forefield: Muragl, Swiss Alps. Permafrost Periglac Process 17:79–85

    Article  Google Scholar 

  • Kneisel C (1999) Permafrost in Gletschervorfeldern. Eine vergleichende Untersuchung in den Ostschweizer Alpen und Nordschweden. Universität Trier: Trierer Geographische Studien 22

    Google Scholar 

  • Kneisel C (2010) The nature and dynamics of frozen ground in alpine and subarctic periglacial environments. Holocene 20:423–445

    Article  Google Scholar 

  • Kneisel C, Kääb A (2007) Mountain permafrost dynamics within a recently exposed glacier forefield inferred by a combined geomorphological, geophysical and photogrammetrical approach. Earth Surf Proc Land 32:1797–1810

    Article  Google Scholar 

  • Kneisel C, Bast A, Schwindt D (2009) Quasi-3-D resistivity imaging—mapping of heterogeneous frozen ground conditions using electrical resistivity tomography. Cryosphere Discuss 3:895–918

    Article  Google Scholar 

  • Labhart TP (1998) Geologie der Schweiz. Thun, 211 pp

    Google Scholar 

  • Lane SN, Bakker M, Gabbud C, Micheletti N, Saugy J-N (2017) Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology 277:210–227

    Article  Google Scholar 

  • Lilleøren KS, Etzelmüller B, Gärtner-Roer I, Kääb A, Westermann S, Gudmundsson A (2013) The distribution, thermal characteristics and dynamics of permafrost in Tröllaskagi, Northern Iceland, as inferred from the distribution of rock glaciers and ice-cored moraines. Permafrost Periglac Process 24:322–335

    Article  Google Scholar 

  • Loke MH (2015) Tutorial: 2-D and 3-D electrical imaging surveys. www.geotomosoft.com/coursenotes.zip

  • Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60:1682–1690

    Article  Google Scholar 

  • Loke MH, Barker RD (1996) Practical techniques for 3D resistivity surveys and data inversion. Geophys Prospect 44:499–523

    Article  Google Scholar 

  • Lukas S (2011) Ice-cored moraines. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glaciers. Encyclopedia of earth science series, part 3, pp 616–619. https://doi.org/10.1007/978-90-481-2642-2_78

    Google Scholar 

  • Maisch M, Wipf A, Denneler B, Battaglia J, Benz C (2000) Die Gletscher der Schweizer Alpen. Gletscherhochstand 1850, Aktuelle Vergletscherung, Gletscherschwundszenarien (2 edn). Zürich: vdf Hochschulverlag AG an der ETH Zürich

    Google Scholar 

  • Maisch M, Haeberli W, Frauenfelder R, Kääb A (2003) Lateglacial and holocene evolution of glaciers and permafrost in the Val Muragl, Upper Engadin, Swiss Alps. In: Phillips M, Springman SM, Arenson L (eds) Proceedings of the eighth international conference on permafrost. Balkema, Zurich, pp 717–722

    Google Scholar 

  • Maurer H, Hauck C (2007) Geophysical imaging of alpine rock glaciers. J Glaciol 53:110–120

    Article  Google Scholar 

  • Østrem G (1959) Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr Ann 51:228–230

    Google Scholar 

  • Ott E, Frehner M, Frey H-U, Lüscher P (1997) Gebirgsnadelwäler. Paul Haupt Verlag, Bern, Stuttgart, Wien, Ein praxisorientierter Leitfaden für eine standortgerechte Waldbehandlung

    Google Scholar 

  • Otto JC, Dikau R (2004) Geomorphologic system analysis of a high mountain valley in the Swiss Alps. Zeitschrift für Gemorphologie, N.F. 48(3):323–341

    Google Scholar 

  • Pellicciotti F, Carenzo M, Bordoy R, Stoffel M (2014) Changes in glaciers in the Swiss Alps and impact on basin hydrology: current state of the art and future research. Sci Total Environ 493:1152–1170

    Article  Google Scholar 

  • PERMOS (2013) Permafrost in Switzerland 2008/2009 and 2009/2010

    Google Scholar 

  • Rastner P, Joerg P-C, Huss M, Zemp M (2016) Historical analysis and visualization of the retreat of Findelengletscher, Switzerland, 1859–2010. Global Planet Change 145:67–77

    Article  Google Scholar 

  • Reynard E, Lambiel C, Delaloye R, Devaud G, Baron L, Chapellier D, Marescot L, Monnet R (2003) Glacier/permafrost relationships in forefields of small glaciers (Swiss Alps). In: Phillips M, Springman SM, Arenson LU (eds) 8th international conference on Permafrost, vol 1, Zurich. A.A. Balkema, Lisse, pp 947–952

    Google Scholar 

  • Rödder T, Kneisel C (2012) Influence of snow cover and grain size on the ground thermal regime in the discontinuous permafrost zone, Swiss Alps. Geomorphology 175–176:176–189

    Article  Google Scholar 

  • Ruff A (2015) Temporal and spatial quantification of geomorphological processes in the recently deglaciated area surrounding the Findelengletscher. Master thesis, Department of Geography, University of Zurich, 78 pp

    Google Scholar 

  • Schomacker A (2008) What controls dead-ice melting under different climate conditions) a discussion. Earth Sci Rev 90:103–113

    Article  Google Scholar 

  • Springman SM, Arenson L, Yamamoto Y, Maurer H, Kos A, Buchli T, Derungs G (2012) Multidisciplinary investigations on three rock glaciers in the Swiss Alps: legacies and future perspecitves. Geogr Ann Ser A Phys Geogr 94:215–243

    Article  Google Scholar 

  • Swift DA, Cook S, Heckmann T, Moore J, Gärtner-Roer I, Korup O (2014) Ice and snow as land-forming agents. In: Haeberli W, Whiteman C (eds) Snow and ice-related hazards, risks, and disasters. Elsevier, Amsterdam, pp 167–199

    Google Scholar 

  • Vaughan DG et al (2013) Observations: cryosphere. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013, Chapter 4. http://www.climatechange2013.org/report/full-report/

  • VAW (2015) The Swiss Glaciers 2009/2010 and 2010/2011. In: Bauder A (ed) Glaciological Report No. 131/132. Publication of the Cryospheric Commission (EKK) of the Swiss Academy of Sciences (SCNAT), 113 pp

    Google Scholar 

  • WGMS (2015) Global glacier change bulletin no. 1 (2012–2013). In: Zemp M, Gärtner-Roer I, Nussbaumer SU, Hüsler F, Machguth H, Mölg N, Paul F, Hoelzle M (eds) ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 230 pp

    Google Scholar 

  • Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33:L13504

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Gärtner-Roer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gärtner-Roer, I., Bast, A. (2019). (Ground) Ice in the Proglacial Zone. In: Heckmann, T., Morche, D. (eds) Geomorphology of Proglacial Systems. Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-94184-4_6

Download citation

Publish with us

Policies and ethics