Skip to main content

Debris-Covered Glaciers

  • Chapter
  • First Online:
Geomorphology of Proglacial Systems

Part of the book series: Geography of the Physical Environment ((GEOPHY))

Abstract

Debris-covered glaciers are characterised by a mantle of rock material, the supraglacial debris , spread over part of the ablation zone. The debris material origins from the catchment above and the bedrock below the glacier and appears at the glacier surface in the ablation zone. It often forms medial moraines in the upper areas which increase down glacier until the glacier is covered across its full width. Debris-covered glaciers are located in all high relief areas around the world, but quantitative information on global scale does not exist. A debris cover affects the ablation of the subjacent glacier ice by increasing it below thin covers and protecting the ice below thicker ones. The critical debris thickness is usually a few centimetres. The surface morphology of debris-covered glaciers can be hilly and ruptured by supraglacial lakes and ice cliffs, which play an important role in glacier mass balance as they are regions of significantly enhanced ice melt. The glacier snouts of debris-covered glaciers are often very slow or stagnant , and the terminus positions are stable over long periods. In this case, only small amounts of debris are transported from the glacial into the proglacial system. It is still a matter of discussion, if debris covers protect glaciers from mass loss due to climate change. They are important sediment sources and are deposited as very large lateral moraines, as lateral–frontal moraines or, after glacier wastage, as supraglacial melt-out. Additionally, a thick debris cover can serve as habitat for animate beings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ageta Y, Iwata S, Yabuki H, Naito N, Sakai A, Narama C, Karma T (2000) Expansion of glacier lakes in recent decades in the Bhutan Himalayas. Debris-Covered Glaciers IAHS Publ 264:165–175

    Google Scholar 

  • Anderson RS (2000) A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts. J Glaciol 46(154):459–469

    Article  Google Scholar 

  • Barsch D (1996) Rockglaciers: indicators for the present and former geoecology in high mountain environments, vol 16. Springer, Berlin

    Google Scholar 

  • Benn D, Evans D (1998) Glaciers and glaciation. United Kingdom, London

    Google Scholar 

  • Benn D, Evans D (2010) Glaciers and glaciation. Hodder Education, London

    Google Scholar 

  • Benn DI, Wiseman S, Hands KA (2001) Growth and drainage of supraglacial lakes on debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal. J Glaciol 47(159):626–638

    Article  Google Scholar 

  • Benn DI, Kirkbride MP, Owen LA, Brazier V (2003) Glaciated valley landsystems. Glacial Landsystems, pp. 372–406. Arnold, London

    Google Scholar 

  • Benn DI, Bolch T, Hands K, Gulley J, Luckman A, Nicholson LI, Quincey D, Thompson S, Toumi R, Wiseman S (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci Rev 114(1–2):156–174

    Article  Google Scholar 

  • Berthling I (2011) Beyond confusion: Rock glaciers as cryo-conditioned landforms. Geomorphology 131(3):98–106

    Article  Google Scholar 

  • Bolch T (2011) Debris. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glaciers. Springer, Berlin, pp 186–188

    Google Scholar 

  • Bolch T, Buchroithner MF, Kunert A, Kamp U (2007) Automated delineation of debris-covered glaciers based on ASTER data. In: Geoinformation in Europe, Proceedings of the 27th EARSeL Symposium, pp 4–6

    Google Scholar 

  • Bolch T, Kulkarni A, Kaab A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan Glaciers. Science 336(6079):310–314. https://doi.org/10.1126/science.1215828

    Article  Google Scholar 

  • Bosson J-B, Lambiel C (2016) Internal structure and current evolution of very small debris-covered glacier systems located in alpine permafrost environments. Front Earth Sci 4:39

    Article  Google Scholar 

  • Bosson JB, Deline P, Bodin X, Schoeneich P, Baron L, Gardent M, Lambiel C (2015) The influence of ground ice distribution on geomorphic dynamics since the Little Ice Age in proglacial areas of two cirque glacier systems. Earth Surf Proc Land 40(5):666–680

    Article  Google Scholar 

  • Brook MS, Hagg W, Winkler S (2012) Debris cover and surface melt at a temperate alpine glacier: Franz Josef Glacier, New Zealand. New Zealand J Geol Geophys, https://doi.org/10.1080/00288306.2012.736391

    Article  Google Scholar 

  • Caccianiga M, Andreis C, Diolaiuti G, D’Agata C, Mihalcea C, Smiraglia C (2011) Alpine debris-covered glaciers as a habitat for plant life. Holocene 21(6):1011–1020

    Article  Google Scholar 

  • Capt M, Bosson J-B, Fischer M, Micheletti N, Lambiel C (2016) Decadal evolution of a very small heavily debris-covered glacier in an Alpine permafrost environment. J Glaciol 62(233):535–551

    Article  Google Scholar 

  • Deline P (2005) Change in surface debris cover on Mont Blanc massif glaciers after the ‘Little Ice Age’ termination. Holocene 15(2):302–309

    Article  Google Scholar 

  • Evatt GW, Abrahams ID, Heil M, Mayer C, Kingslake J, Mitchell SL, Fowler AC, Clark CD (2015) Glacial melt under a porous debris layer. J Glaciol 61(229):825–836

    Article  Google Scholar 

  • Eyles N, Rogerson RJ (1978) A framework for the investigation of medial moraine formation: Austerdalsbreen, Norway, and Berendon Glacier, British Columbia. Canada. J Glaciol 20(82):99–113

    Article  Google Scholar 

  • Fickert T, Friend D, Grüninger F, Molnia B, Richter M (2007) Did debris-covered glaciers serve as Pleistocene refugia for plants? a new hypothesis derived from observations of recent plant growth on glacier surfaces. Arct Antarct Alp Res 39(2):245–257

    Article  Google Scholar 

  • Fischer M, Huss M, Barboux C, Hoelzle M (2014) The new Swiss Glacier Inventory SGI2010: relevance of using high-resolution source data in areas dominated by very small glaciers. Arct Antarct Alp Res 46(4):933–945

    Article  Google Scholar 

  • Foster LA, Brock BW, Cutler MEJ, Diotri F (2012) A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data. J Glaciol 58(210):677–691

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y, Kaab A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 7(4):1263–1286

    Article  Google Scholar 

  • Haeberli W, Hallet B, Arenson L, Elconin R, Humlum O, Kääb A, Kaufmann V, Ladanyi B, Matsuoka N, Springman S (2006) Permafrost creep and rock glacier dynamics. Permafrost Periglac Process 17(3):189–214

    Article  Google Scholar 

  • Hagg W, Mayer C, Lambrecht A, Helm A, Michailjlow W (2008) Glaciological results of the 2005 expedition to Inylchek Glacier, Central Tian Shan. Geog Environ Sustain 1:38–45

    Google Scholar 

  • Hambrey MJ, Quincey DJ, Glasser NF, Reynolds JM, Richardson SJ, Clemmens S (2008) Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal. Quat Sci Rev 27(25–26):2361–2389

    Article  Google Scholar 

  • Herman F, Beyssac O, Brughelli M, Lane SN, Leprince S, Adatte T, Lin JY, Avouac J-P, Cox SC (2015) Erosion by an Alpine glacier. Science 350(6257):193–195

    Article  Google Scholar 

  • Humlum O (1978) Genesis of layered lateral moraines: implications for palaeoclimatology and lichenometry. Geografisk Tidsskrift-Danish J Geog 77(1):65–72

    Article  Google Scholar 

  • Huss M, Fischer M (2016) Sensitivity of very small glaciers in the Swiss Alps to future climate change. Front Earth Sci 4:34

    Article  Google Scholar 

  • Janke JR, Bellisario AC, Ferrando FA (2015) Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology 241:98–121

    Article  Google Scholar 

  • Jouvet G, Huss M, Funk M, Blatter H (2011) Modelling the retreat of Grosser Aletschgletscher, Switzerland, in a changing climate. J Glaciol 57(206):1033–1045

    Article  Google Scholar 

  • Juen M, Mayer C, Lambrecht A, Han H, Liu S (2014) Impact of varying debris cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan. Cryosphere 8(2):377–386. https://doi.org/10.5194/tc-8-377-2014

    Article  Google Scholar 

  • Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412):495–498

    Article  Google Scholar 

  • Kirkbride MP (1993) The temporal significance of transitions from melting to calving termini at glaciers in the central Southern Alps of New Zealand. The Holocene 3:232–240

    Article  Google Scholar 

  • Kirkbride MP (2000) Ice-marginal geomorphology and holocene expansion of debris-covered Tasman Glacier, New Zealand. Debris-Covered Glaciers 264:211–217

    Google Scholar 

  • Kirkbride MP (2011) Debris-covered glaciers. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glaciers. Springer, Berlin, pp 180–182

    Chapter  Google Scholar 

  • Kirkbride MP, Deline P (2013) The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands. Earth Surf Proc Land 38(15):1779–1792

    Article  Google Scholar 

  • Lambrecht A, Mayer C, Hagg W, Popovnin V, Rezepkin A, Lomidze N, Svanadze D (2011) A comparison of glacier melt on debris-covered glaciers in the Northern and Southern Caucasus. Cryosphere 5(3):525–538

    Article  Google Scholar 

  • Mattson LE (2000) The influence of a debris cover on the midsummer discharge of Dome Glacier, Canadian Rocky Mountains. Debris-Covered Glaciers IAHS Publ 264:25–33

    Google Scholar 

  • Mavlyudov B (2006) Glacial karst, why it important to research. Acta Carsologica 35(1):55–67

    Article  Google Scholar 

  • Mayer C, Lambrecht A, Belo M, Smiraglia C, Diolaiuti G (2006) Glaciological characteristics of the ablation zone of Baltoro glacier, Karakoram, Pakistan. Ann Glaciol 43(43):123–131

    Article  Google Scholar 

  • Mayer C, Lambrecht A, Hagg W, Narozhny Y (2011) Glacial debris cover and melt water production for glaciers in the Altay, Russia. Cryosphere Discuss 5(1):401–430

    Article  Google Scholar 

  • Mayr E, Juen M, Mayer C, Usubaliev R, Hagg W (2014) Modeling runoff from the Inylchek Glaciers and filling of Ice-Dammed Lake Merzbacher, Central Tian Shan. Geogr Ann A 96(4):609–625. https://doi.org/10.1111/Geoa.12061

    Article  Google Scholar 

  • Mihalcea C, Brock BW, Diolaiuti G, D’Agata C, Citterio M, Kirkbride MP, Cutler MEJ, Smiraglia C (2008) Using ASTER satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif, Italy). Cold Reg Sci Technol 52(3):341–354

    Article  Google Scholar 

  • Moribayashi S, Higuchi K (1977) Characteristics of glaciers in the Khumbu region and their recent variations. 雪氷 39 (Special):3–6

    Article  Google Scholar 

  • Nakawo M, Young GJ (1982) Estimate of Glacier ablation under a debris layer from surface-temperature and meteorological variables. J Glaciol 28(98):29–34

    Article  Google Scholar 

  • Nicholson L, Benn DI (2013) Properties of natural supraglacial debris in relation to modelling sub-debris ice ablation. Earth Surf Proc Land 38(5):490–501

    Article  Google Scholar 

  • Østrem G (1959) Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geogr Ann 41:228–230

    Google Scholar 

  • Paul F, Huggel C, Kaab A (2004) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens Environ 89(4):510–518

    Article  Google Scholar 

  • Paul F, Maisch M, Rothenbuhler C, Hoelzle M, Haeberli W (2007) Calculation and visualisation of future glacier extent in the Swiss Alps by means of hypsographic modelling. Global Planet Change 55(4):343–357

    Article  Google Scholar 

  • Racoviteanu AE, Arnaud Y, Williams MW, Ordonez J (2008) Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J Glaciol 54(186):499–510

    Article  Google Scholar 

  • Ranzi R, Grossi G, Iacovelli L, Taschner S (2004) Use of multispectral ASTER images for mapping debris-covered glaciers within the GLIMS Project. In: Geoscience and Remote Sensing Symposium, 2004. IGARSS’04. Proceedings. 2004 IEEE International. IEEE, pp 1144–1147

    Google Scholar 

  • Reid TD, Brock BW (2014) Assessing ice-cliff backwasting and its contribution to total ablation of debris-covered Miage glacier, Mont Blanc massif, Italy. J Glaciol 60(219):3–13. https://doi.org/10.3189/2014jog13j045

    Article  Google Scholar 

  • Roehl K (2008) Characteristics and evolution of supraglacial ponds on debris-covered Tasman Glacier, New Zealand. J Glaciol 54(188):867–880

    Article  Google Scholar 

  • Rowan AV, Egholm DL, Quincey DJ, Glasser NF (2015) Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya. Earth Planet Sci Lett 430:427–438

    Article  Google Scholar 

  • Sakai A, Takeuchi N, Fujita K, Nakawo M (2000) Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas. Debris-Covered Glaciers IAHS Publ 264:119–130

    Google Scholar 

  • Sakai A, Nakawo M, Fujita K (2002) Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya. Arct Antarct Alp Res 34(1):12–19

    Article  Google Scholar 

  • Sakai A, Nishimura K, Kadota T, Takeuchi N (2009) Onset of calving at supraglacial lakes on debris-covered glaciers of the Nepal Himalaya. J Glaciol 55(193):909–917

    Article  Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4(3):156–159

    Article  Google Scholar 

  • Schmidt S, Nüsser M (2009) Fluctuations of Raikot Glacier during the past 70 years: a case study from the Nanga Parbat massif, northern Pakistan. J Glaciol 55(194):949–959

    Article  Google Scholar 

  • Shroder JF, Bishop MP, Copland L, Sloan VF (2000) Debris-covered glaciers and rock glaciers in the Nanga Parbat Himalaya. Pakistan. Geogr Ann A 82a(1):17–31

    Article  Google Scholar 

  • Stokes CR, Popovnin V, Aleynikov A, Gurney SD, Shahgedanova M (2007) Recent glacier retreat in the Caucasus Mountains, Russia, and associated increase in supraglacial debris cover and supra-/proglacial lake development. Ann Glaciol 46:195–203

    Article  Google Scholar 

  • Sugden DE, John BS (1976) Glaciers and landscape. E.Arnold, London

    Google Scholar 

  • Vezzola LC, Guglielmina AD, D’Agata C, Smiraglia C, Pelfini M (2016) Assessing glacier features supporting supraglacial trees: a case study of the Miage debris-covered Glacier (Italian Alps). The Holocene OnlineFirst

    Google Scholar 

  • Wahrhaftig C, Cox A (1959) Rock glaciers in the Alaska Range. Geol Soc Am Bull 70(4):383–436

    Article  Google Scholar 

  • Winkler S (2009) Gletscher und ihre Landschaften. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

Download references

Acknowledgements

Wilfried Hagg is supported by the DFG Heisenberg programme (project HA 5061/3-1). The valuable comments by Jean-Baptiste Bosson are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Mayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mayr, E., Hagg, W. (2019). Debris-Covered Glaciers. In: Heckmann, T., Morche, D. (eds) Geomorphology of Proglacial Systems. Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-94184-4_4

Download citation

Publish with us

Policies and ethics