Skip to main content

Cardiopulmonary Interactions in Adults with Congenital Heart Disease

  • Chapter
  • First Online:
Intensive Care of the Adult with Congenital Heart Disease

Abstract

The population of adults with congenital heart disease (CHD) has increased dramatically over the past few decades, with the number of adults with CHD now surpassing the pediatric population. Adult CHD (ACHD) encompasses a broad range of presentations, with some patients diagnosed for the first time in adulthood. The majority of patients however have undergone a palliative repair during childhood and now are dealing with sequela and/or residual disease years to decades later. All of which may be compounded by acquired cardiovascular disease. In this review, we describe the physiologic underpinnings of the interaction between the respiratory and cardiovascular systems and their clinical impact in ACHD. We will review the physiologic underpinnings of cardiopulmonary interactions and the effects of respiration on cardiovascular function, the impact of respiration on cardiovascular function in adult patients with congenital and acquired heart disease, the effects of respiratory disease on cardiovascular function, and the impact of cardiovascular disease on respiratory function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guyton AC, Jones CE, Coleman TG. Peripheral vascular contribution to cardiac output regulation—the concept of “venous return”. In: Guyton AC, Jones CE, Coleman TG, editors. Circulatory physiology: cardiac output and its regulation. 2nd ed. Philadelphia, PA: WB Saunders; 1973. p. 173–87.

    Google Scholar 

  2. Funk DJ, Jacobsohn E, Kumar A. The role of venous return in critical illness and shock—part I: physiology. Crit Care Med. 2013;41:255–62.

    Article  PubMed  Google Scholar 

  3. Gelman S. Venous function and central venous pressure. Anesthesiology. 2008;108:735–48.

    Article  PubMed  Google Scholar 

  4. Herndon CW, Sagawa K. Combined effects of aortic and right atrial pressures on aortic flow. Am J Phys. 1969;217:65–72.

    CAS  Google Scholar 

  5. Landis EM, Hortenstine JC. Functional significance of venous blood pressure. Am Physiol Soc. 1950;30:1–32.

    CAS  Google Scholar 

  6. Hatanakah T, Potts JT. Invariance of the resistance to venous return to carotid sinus baroreflex control. Am J Phys. 1996;271(3 Pt 2):H1022–30.

    Google Scholar 

  7. Caldini P, Permutt S, Waddell JA, et al. Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation in dogs. Circ Res. 1974;34:606–23.

    Article  CAS  PubMed  Google Scholar 

  8. Greene AS, Shoukas AA. Changes in canine cardiac function and venous return curves by the carotid baroreflex. Am J Phys. 1986;251:H288–96.

    CAS  Google Scholar 

  9. Guyton AC, Lindsey AW, Abernathy B, et al. Mechanism of the increased venous return and cardiac output caused by epinephrine. Am J Phys. 1958;192:126–30.

    CAS  Google Scholar 

  10. Guyton AC, Richardson TQ. Effect of hematocrit on venous return. Circ Res. 1961;9:157–64.

    Article  CAS  PubMed  Google Scholar 

  11. Rothe CF. Mean circulatory filling pressure: its meaning and measurement. J Appl Physiol. 1993;74:499–509.

    Article  CAS  PubMed  Google Scholar 

  12. Guyton AC, Jones CE, Coleman TG. Mean circulatory pressure, mean systemic pressure, and mean pulmonary pressure and their effects on venous return. In: Guyton AC, Jones CE, Coleman TG, editors. Circulatory physiology: cardiac output and its regulation. 2nd ed. Philadelphia, PA: WB Saunders; 1973. p. 205–21.

    Google Scholar 

  13. Drees JA, Rothe CF. Reflex venoconstriction and capacity vessel pressure-volume relationships in dogs. Circ Res. 1974;XXXIV:360–73.

    Article  Google Scholar 

  14. O’Brien LJ. Negative diastolic pressure in the isolated hypothermic dog heart. Circ Res. 1960;10:188–96.

    Google Scholar 

  15. Nakatani S, Beppu S, Nagata S, et al. Diastolic suction in the human ventricle: observation during balloon mitral valvuloplasty with a single balloon. Am Heart J. 1994;127:143–7.

    Article  CAS  PubMed  Google Scholar 

  16. Yellin EL, Hori M, Yoran H, et al. Left ventricular relaxation in the filling and nonfilling intact canine heart. Am J Phys. 1986;250:H620–9.

    CAS  Google Scholar 

  17. Takata M, Wise RA, Robotham JL. Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol. 1990;69:1961–72.

    Article  CAS  PubMed  Google Scholar 

  18. Takata M, Robotham JL. Effects of inspiratory diaphragmatic descent on inferior vena caval venous return. J Appl Physiol. 1992;72:597–607.

    Article  CAS  PubMed  Google Scholar 

  19. Lloyd TC Jr. Effect of inspiration on inferior vena caval blood flow in dogs. J Appl Phyisol. 1983;55:1701–8.

    Google Scholar 

  20. Karim F, Hainsworth R. Responses of abdominal vascular capacitance to stimulation of splanchnic nerves. Am J Phys. 1976;231:434–40.

    CAS  Google Scholar 

  21. Guyton AC, Adkins LH. Quantitative aspects of the collapse factor in relation to venous return. Am J Phys. 1954;177:523–7.

    CAS  Google Scholar 

  22. Bark H, LeRoith D, Myska M, et al. Elevations in plasma ADH levels during PEEP ventilation in the dog: mechanisms involved. Am J Phys. 1980;239:E474–80.

    CAS  Google Scholar 

  23. Scharf SM, Ingram RH Jr. Influence of abdominal pressure and sympathetic vasoconstriction on the cardiovascular response to positive end-expiratory pressure. Am Rev Respir Dis. 1977;116:661–70.

    Article  CAS  PubMed  Google Scholar 

  24. Pinsky M. Determinants of pulmonary arterial flow variation during respiration. J Appl Physiol. 1984;56:1237–45.

    Article  CAS  PubMed  Google Scholar 

  25. Cabrera MR, Nakamura GE, Montague DA, et al. Effect of airway pressure on pericardial pressure. Am Rev Respir Dis. 1989;140:659 667.

    Article  Google Scholar 

  26. Novak R, Matuschak GM, Pinsky MR. Effect of positive-pressure ventilatory frequency on regional pleural pressure. J Appl Physiol. 1988;65:1314–23.

    Article  CAS  PubMed  Google Scholar 

  27. Fewell JE, Abendschein DR, Carlson J, et al. Mechanism of decreased right and left ventricular end-diastolic volumes during continuous positive-pressure ventilation in dogs. Circ Res. 1980;47:467–72.

    Article  CAS  PubMed  Google Scholar 

  28. O’Quin R, Marini JJ. Pulmonary artery occlusion pressure: clinical physiology, measurement, and interpretation. Am Rev Respir Dis. 1983;128:319–26.

    PubMed  Google Scholar 

  29. Takata M, Robotham JL. Ventricular external constraint by the lung and pericardium during positive end-expiratory pressure. Am Rev Respir Dis. 1991;143:872–5.

    Article  CAS  PubMed  Google Scholar 

  30. Bronicki RA, Baden HP. Pathophysiology of right ventricular failure in pulmonary hypertension. Pediatr Crit Care Med. 2010;11(Suppl):S15–22.

    Article  PubMed  Google Scholar 

  31. Peters J, Kindred MK, Robotham JL. Transient analysis of cardiopulmonary interactions. I. Diastolic events. J Appl Physiol. 1988;64:1506–17.

    Article  CAS  PubMed  Google Scholar 

  32. Buckberg G, Hoffman JIE, Nanda NC. Ventricular torsion and untwisting: further insights into mechanics and timing interdependence: a viewpoint. Echocardiography. 2011;28:782–804.

    Article  PubMed  Google Scholar 

  33. van Dalen BM, Kauer F, Vletter WB, et al. Influence of cardiac shape on left ventricular twist. J Appl Physiol. 2010;108:146–51.

    Article  PubMed  Google Scholar 

  34. Brookes C, Ravn H, White P, et al. Acute right ventricular dilatation in response to ischemia significantly impairs left ventricular systolic performance. Circulation. 1999;100:761–7.

    Article  CAS  PubMed  Google Scholar 

  35. Santamore WP, Gray L. Significant left ventricular contributions to right ventricular systolic function. Chest. 1995;107:1134–45.

    Article  CAS  PubMed  Google Scholar 

  36. Belenkie I, Horne SG, Dani R, et al. Effects of aortic constriction during experimental acute right ventricular pressure loading. Circulation. 1995;92:546–54.

    Article  CAS  PubMed  Google Scholar 

  37. Ricciardi MJ, Bossone E, Bach DS, et al. Echocardiographic predictors of an adverse response to a nifedipine trial in primary pulmonary hypertension: diminished left ventricular size and leftward ventricular septal bowing. Chest. 1999;116:1218–23.

    Article  CAS  PubMed  Google Scholar 

  38. Apitz C, Honjo O, Humpl T, et al. Biventricular structural and functional responses to aortic constriction in a rabbit model of chronic right ventricular pressure overload. J Thorac Cardiovasc Surg. 2012;144:1494–501.

    Article  PubMed  Google Scholar 

  39. Apitz C, Honjo O, Friedberg MK, et al. Beneficial effects of vasopressors on right ventricular function in experimental acute right ventricular failure in a rabbit model. Thorac Cardiovasc Surg. 2012;60:17–25.

    Article  PubMed  Google Scholar 

  40. Page RD, Harringer W, Hodakowski GT, et al. Determinants of maximal right ventricular function. J Heart Lung Transplant. 1992;11:90–8.

    CAS  PubMed  Google Scholar 

  41. Peters J, Kindred MK, Robotham JL. Transient analysis of cardiopulmonary interaction. II. Systolic events. J Appl Physiol. 1988;64:1518–26.

    Article  CAS  PubMed  Google Scholar 

  42. Fessler HE, Brower RG, Wise RA, et al. Mechanism of reduced LV afterload by systolic and diastolic positive pleural pressure. J Appl Physiol. 1988;65:1244–50.

    Article  CAS  PubMed  Google Scholar 

  43. Pinsky MR, Matuschak GM, Bernardi L, et al. Hemodynamic effects of cardiac cycle-specific increases in intrathoracic pressure. J Appl Physiol. 1986;60:604–12.

    Article  CAS  PubMed  Google Scholar 

  44. Pinsky MR, Marquez J, Martin D, et al. Ventricular assist by cardiac cycle-specific increases in intrathoracic pressure. Chest. 1987;91:709–15.

    Article  CAS  PubMed  Google Scholar 

  45. Viellard-Baron A, Chergui K, Augarde R, et al. Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med. 2003;168:671–6.

    Article  Google Scholar 

  46. Massumi RA, Mason DT, Vera Z, et al. Reversed pulsus paradoxus. New Engl J Med. 1973;289:1272–5.

    Article  CAS  PubMed  Google Scholar 

  47. He J, Ogden LG, Bazzano LA, et al. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161:996–1002.

    Article  CAS  PubMed  Google Scholar 

  48. Giannakoulas G, Dimopoulos K, Engel R, et al. Burden of coronary artery disease in adults with congenital heart disease and its relation to congenital and traditional heart risk factors. Am J Cardiol. 2009;103:1445–50.

    Article  PubMed  Google Scholar 

  49. Grace MP, Greenbaum DM. Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med. 1982;10:358–60.

    Article  CAS  PubMed  Google Scholar 

  50. Bradley TD, Holloway RM, McLauglin PR, et al. Cardiac output response to continuous positive airway pressure in congestive heart failure. Am Rev Respir Dis. 1982;145:377–82.

    Article  Google Scholar 

  51. Scharf SM. Ventilatory support in cardiac failure. Curr Opin Crit Care. 1997;3:71–7.

    Article  Google Scholar 

  52. Rasanen J, Vaisanen IT, Heikkila J, et al. Acute myocardial infarction complicated by left ventricular dysfunction and respiratory failure. The effects of continuous positive airway pressure. Chest. 1985;87:158–62.

    Article  CAS  PubMed  Google Scholar 

  53. Scharf SM, Chen L, Rao PS. Effects of continuous positive airway pressure on cardiac output and plasma norepinephrine in sedated pigs. J Crit Care. 1996;11:57–64.

    Article  CAS  PubMed  Google Scholar 

  54. Genovese J, Moskowitz M, Tarasiuk A, et al. Effects of continuous positive airway pressure on cardiac output in normal and hypervolemic unanesthetized pigs. Am J Respir Crit Care Med. 1994;150:752–8.

    Article  CAS  PubMed  Google Scholar 

  55. Kennedy SK, Weintraub RM, Skillman JJ. Cardiorespiratory and sympathoadrenal responses during weaning from controlled ventilation. Surgery. 1977;82:233–40.

    CAS  PubMed  Google Scholar 

  56. Rasanen J, Nikki P, Heikkila J. Acute myocardial infarction complicated by respiratory failure. Chest. 1984;85:21–8.

    Article  CAS  PubMed  Google Scholar 

  57. Scharf SM, Bianco JA, Tow DE, et al. The effects of large negative intrathoracic pressure on left ventricular function in patients with coronary artery disease. Circulation. 1981;63:871–5.

    Article  CAS  PubMed  Google Scholar 

  58. Jubran A, Mathru M, Dries D, et al. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med. 1998;158:1763–9.

    Article  CAS  PubMed  Google Scholar 

  59. Winck J, Azevedo LF, Costa-Pereira A, et al. Efficacy and safety of non-invasive ventilation in the treatment of acute cardiogenic pulmonary edema—a systematic review and meta-analysis. Crit Care. 2006;10:1–18.

    Article  Google Scholar 

  60. Massip J, Roque M, Sanchez B, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema. JAMA. 2005;294:3124–30.

    Article  Google Scholar 

  61. Haruki N, Takeuchi M, Kaku K, et al. Comparison of acute and chronic impact of adaptive servo-ventilation on left chamber geometry and function in patients with chronic heart failure. Eur J Heart Fail. 2011;10:1140–6.

    Article  Google Scholar 

  62. Cullen S, Shore D, Redington A. Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Circulation. 1995;91:1782–9.

    Article  CAS  PubMed  Google Scholar 

  63. Appleton CP, Hatle LK, Popp RL. Demonstration of restrictive ventricular physiology by Doppler echocardiography. J Am Coll Cardiol. 1988;11:757–68.

    Article  CAS  PubMed  Google Scholar 

  64. Shekerdemian LS, Bush A, Shore DF, et al. Cardiorespiratory responses to negative pressure ventilation after tetralogy of Fallot repair: a hemodynamic tool for patients with a low-output state. J Am Coll Cardiol. 1999;33:549–55.

    Article  CAS  PubMed  Google Scholar 

  65. Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N Engl J Med. 1997;336:267–76.

    Article  CAS  PubMed  Google Scholar 

  66. Fifer MA, Vlahakes GJ. Management of symptoms in hypertrophic cardiomyopathy. Circulation. 2008;117:429–39.

    Article  PubMed  Google Scholar 

  67. Gotsman MS, Lewis BS. Left ventricular volumes and compliance in hypertrophic cardiomyopathy. Chest. 1974;66:498–505.

    Article  CAS  PubMed  Google Scholar 

  68. Thomson HL, Morris-Thurgood J, Atherton J, et al. Reflex responses of venous capacitance vessels in patients with hypertrophic cardiomyopathy. Clin Sci. 1998;94:339–46.

    Article  CAS  Google Scholar 

  69. Braunwald E, Oldham H Jr, Ross J, et al. The circulatory response of patients with idiopathic hypertrophic subaortic stenosis to nitroglycerin and to the Valsalva maneuver. Circulation. 1964;29:422–31.

    Article  CAS  PubMed  Google Scholar 

  70. Braunwald E, Ebert PA. Hemodynamic alterations in idiopathic hypertrophic subaortic stenosis induced by sympathomimetic drugs. Am J Cardiol. 1962;10:489–95.

    Article  CAS  PubMed  Google Scholar 

  71. Mace L, Dervanian P, Bourriez A, et al. Changes in venous return parameters associated with univentricular Fontan circulations. Am J Physiol Heart Circ Physiol. 2000;279:H2335–43.

    Article  CAS  PubMed  Google Scholar 

  72. Myers CD, Ballman K, Riegle LE, et al. Mechanisms of systemic adaptation to univentricular Fontan conversion. J Thorac Cardiovasc Surg. 2010;140:850–6.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kelley JR, Mack GW, Fahey JT. Diminished venous vascular capacitance in patients with univentricular hearts after the Fontan operation. Am J Cardiol. 1995;76:158–63.

    Article  CAS  PubMed  Google Scholar 

  74. Krishnan US, Taneja I, Gewitz M, et al. Peripheral vascular adaptation and orthostatic tolerance in Fontan physiology. Circulation. 2009;120:1775–83.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fogel MA, Weinberg PM, Hoydu A, et al. The nature of low in the systemic venous pathway measured by magnetic resonance blood tagging in patients having the Fontan operation. J Thorac Cardiovasc Surg. 1997;114:1032–41.

    Article  CAS  PubMed  Google Scholar 

  76. Qureshi S, Richheimer R, McKay R, et al. Doppler echocardiographic evaluation of pulmonary artery flow after modified Fontan operation: importance of atrial contractions. Br Heart J. 1990;64:272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Penny DJ, Rigby ML, Redington AN. Abnormal patterns of intraventricular flow and diastolic filling after the Fontan operation: evidence for incoordinate ventricular wall motion. Br Heart J. 1991;66:375–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cheung YF, Penny DJ, Redington AN. Serial assessment of left ventricular diastolic function after Fontan procedure. Heart. 2000;83:420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rychik J, Goldberg DJ. Late consequences of the Fontan operation. Circulation. 2014;130:1525–8.

    Article  PubMed  Google Scholar 

  80. Gewillig M, Brown SC. The Fontan circulation after 45 years: update in physiology. Heart. 2016;102:1081–6.

    Article  PubMed  Google Scholar 

  81. Anderson PAW, Sleeper LA, Mahony L, et al. Contemporary outcomes after the Fontan procedure: a pediatric heart network multicenter study. J Am Coll Cardiol. 2008;52:85–98.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lloyd TR, Rydberg A, Ludomirsky A, et al. Late fenestration closure in the hypoplastic left heart syndrome: comparison of hemodynamic changes. Am Heart J. 1998;136:302–6.

    Article  CAS  PubMed  Google Scholar 

  83. Grosse-Wortmann L, Dragulescu A, Drolet C, et al. Determinants and clinical significance of flow via the fenestration in the Fontan pathway: a multimodality study. Int J Cardiol. 2013;168:811–7.

    Article  PubMed  Google Scholar 

  84. Kuhn MA, Jarmakani JM, Laks H, et al. Effect of late postoperative atrial septal defect closure on hemodynamic function in patients with a lateral tunnel Fontan procedure. J Am Coll Cardiol. 1995;26:259–65.

    Article  CAS  PubMed  Google Scholar 

  85. Hsia T-Y, Khambadkone S, Redington AN, et al. Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation. 2000;102(Suppl III):III-148–53.

    CAS  Google Scholar 

  86. Shekerdemian LS, Bush A, Shore DF, et al. Cardiopulmonary interactions after the Fontan operation. Augmentation of cardiac output using negative pressure ventilation. Circulation. 1997;96:3934–42.

    Article  CAS  PubMed  Google Scholar 

  87. Jayakumar KA, Addonizio LJ, Kichuk-Chrisant MR, et al. Cardiac transplantation after the Fontan or Glenn procedure. J Am Coll Cardiol. 2004;44:2065–72.

    Article  PubMed  Google Scholar 

  88. Griffiths ER, Kaza AK, Wyler von Ballmoos MC, et al. Evaluating failing Fontans for heart transplantation: predictors of mortality. Ann Thorac Surg. 2009;88:558–64.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Warnes CA. Adult congenital heart disease. J Am Coll Cardiol. 2009;54:1903–10.

    Article  PubMed  Google Scholar 

  90. Anderson KR, Lie JT. The right ventricular myocardium in Ebstein’s anomaly: a morphometric histopathologic study. Mayo Clin Proc. 1979;54:181–4.

    CAS  PubMed  Google Scholar 

  91. Kasai T, Floras JS, Bradley TD. Sleep apnea and cardiovascular disease: a bidirectional relationship. Circulation. 2012;126:1495–510.

    Article  PubMed  Google Scholar 

  92. Somers VK, Dyken ME, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96:1897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yumino D, Kasai T, Kimmerly D, et al. Differing effects of obstructive and central sleep apneas on stroke volume in patients with heart failure. Am J Respir Crit Care Med. 2013;187:433–8.

    Article  PubMed  Google Scholar 

  94. Kuniyoshi F, Garcia-Touchard A, Gami AS, et al. Day-night variation of acute myocardial infarction in obstructive sleep apnea. J Am Coll Cardiol. 2008;52:343–6.

    Article  PubMed  Google Scholar 

  95. Arias MA, Garcia-Rio F, Alonso-Fernandez A, et al. Obstructive sleep apnea syndrome affects left ventricular diastolic function: effects of nasal continuous positive airway pressure in men. Circulation. 2005;112:375–83.

    Article  PubMed  Google Scholar 

  96. Sofer S, Weinhouse E, Tal A, et al. Cor pulmonale due to adenoid or tonsillar hypertrophy or both in children. Chest. 1988;93:119–22.

    Article  CAS  PubMed  Google Scholar 

  97. Amin RS, Kimball TR, Bean JA, et al. Left ventricular hypertrophy and abnormal ventricular geometry in children and adolescent with obstructive sleep apnea. Am J Crit Care Respir Med. 2002;165:1395–9.

    Article  Google Scholar 

  98. Shivalkar B, Van De Heyning C, Kerremans M, et al. Obstructive sleep apnea syndrome. More insights on structural and functional cardiac alterations, and the effects of treatment with continuous positive airway pressure. J Am Coll Cardiol. 2006;47:1433–9.

    Article  PubMed  Google Scholar 

  99. Kaneko Y, Floras JS, Usui K, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348:1233–41.

    Article  PubMed  Google Scholar 

  100. Vieillard-Baron A, Loubieres Y, Schmitt J-M, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.

    Article  CAS  PubMed  Google Scholar 

  101. Jardin F, Viellard-Baron A. Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med. 2003;29:1426–34.

    Article  PubMed  Google Scholar 

  102. Bone R. The ARDS lung: new insights from computed tomography. JAMA. 1993;269:2134–5.

    Article  CAS  PubMed  Google Scholar 

  103. Gattinoni L, Marini JJ, Pesenti A, et al. The “baby lung” became an adult. Intensive Care Med. 2016;42:663–73.

    Article  PubMed  Google Scholar 

  104. Price LC, McAuley DF, Marino PS, et al. Pathophysiology of pulmonary hypertension in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2010;302:L803–15.

    Article  CAS  Google Scholar 

  105. Hill NS, Roberts K, Preston I. Editorial. Pulmonary vasculopathy in acute respiratory distress syndrome. Something new, something old…. Am J Respir Crit Care Med. 2010;182:1093–7.

    Article  PubMed  Google Scholar 

  106. Dessap AM, Boissier F, Leon R, et al. Prevalence and prognosis shunting across patent foramen ovale during acute respiratory distress syndrome. Crit Care Med. 2010;38:1786–92.

    Article  Google Scholar 

  107. Roussos C, Macklem PT. The respiratory muscles. N Engl J Med. 1982;307:786–97.

    Article  CAS  PubMed  Google Scholar 

  108. Rochester DF, Bettini G. Diaphragmatic blood flow and energy expenditure in the dog. Effects of inspiratory airflow resistance and hypercapnia. J Clin Invest. 1976;57:661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Viires N, Aubier SM, Rassidakis A, et al. Regional blood flow distribution in dog during induced hypotension and low cardiac output. J Clin Invest. 1983;72:935–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hussain SNA, Roussos C. Distribution of respiratory muscle and organ blood flow during endotoxic shock in dogs. J Appl Physiol. 1985;59:1802–8.

    Article  CAS  PubMed  Google Scholar 

  111. Thomas R, Stephane P. Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol. 2008;102:153–63.

    Article  CAS  PubMed  Google Scholar 

  112. Rooks CR, Thom NJ, McCully KK, et al. Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Prog Neurobiol. 2010;92:134–50.

    Article  PubMed  Google Scholar 

  113. Madsen PL, Nielsen HB, Christiansen P. Well-being and cerebral oxygen saturation during acute heart failure in humans. Clin Physiol. 2000;20:158–64.

    Article  CAS  PubMed  Google Scholar 

  114. Choi B-R, Kim JS, Yang YJ, et al. Factors associated with decreased cerebral blood flow in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol. 2006;97:1365–9.

    Article  PubMed  Google Scholar 

  115. Gruhn N, Larsen FS, Boesgaard S, et al. Cerebral flood flow in patients with chronic heart failure before and after heart transplantation. Stroke. 2001;32:2530–3.

    Article  CAS  PubMed  Google Scholar 

  116. Fu T-C, Wang C-H, Hsu C-C, et al. Suppression of cerebral hemodynamics is associated with reduced functional capacity in patients with heart failure. Am J Physiol Heart Circ Physiol. 2011;300:H1545–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Koike A, Hoshimoto M, Tajima A, et al. Critical level of cerebral oxygenation during exercise in patients with left ventricular dysfunction. Circ J. 2006;70:1457–61.

    Article  CAS  PubMed  Google Scholar 

  118. Koike A, Hoshimoto M, Nagayama O, et al. Cerebral oxygenation during exercise and exercise recovery in patients with idiopathic dilated cardiomyopathy. Am J Cardiol. 2004;94:821–4.

    Article  PubMed  Google Scholar 

  119. Van Bommel RJ, Marsan NA, Koppen H, et al. Effect of cardiac resynchronization therapy on cerebral blood flow. Am J Cardiol. 2010;106:73–7.

    Article  PubMed  Google Scholar 

  120. Rajagopalan B, Raine AEG, Cooper R, et al. Changes in cerebral blood flow in patients with severe congestive cardiac failure before and after captopril treatment. Am J Med. 1984;76:86–90.

    Article  CAS  PubMed  Google Scholar 

  121. Luijckx G-J, van den Berg MP. Heart failure and the brain, a wake-up call. Eur J Heart Fail. 2011;13:597–8.

    Article  PubMed  Google Scholar 

  122. Vogels RL, Oosterman JM, Laman DM, et al. Transcranial Doppler blood flow assessment in patients with mild heart failure: correlates with neuroimaging and cognitive performance. Congest Heart Fail. 2008;14:61–5.

    Article  PubMed  Google Scholar 

  123. Lee CW, Lee J-H, Kim J-J, et al. Cerebral metabolic abnormalities in congestive heart failure detected by proton magnetic resonance spectroscopy. J Am Coll Cardiol. 1999;33:1196–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. Bronicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bronicki, R.A., Redington, A.N. (2019). Cardiopulmonary Interactions in Adults with Congenital Heart Disease. In: da Cruz, E., Macrae, D., Webb, G. (eds) Intensive Care of the Adult with Congenital Heart Disease. Congenital Heart Disease in Adolescents and Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-94171-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94171-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94170-7

  • Online ISBN: 978-3-319-94171-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics