Advertisement

Secure Non-interactive User Re-enrollment in Biometrics-Based Identification and Authentication Systems

  • Ivan De Oliveira NunesEmail author
  • Karim Eldefrawy
  • Tancrède Lepoint
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10879)

Abstract

Recent years have witnessed an increase in demand for biometrics based identification, authentication and access control (BIA) systems, which offer convenience, ease of use, and (in some cases) improved security. In contrast to other methods, such as passwords or pins, BIA systems face new unique challenges; chiefly among them is ensuring long-term confidentiality of biometric data stored in backends, as such data has to be secured for the lifetime of an individual. Cryptographic approaches such as Fuzzy Extractors (FE) and Fuzzy Vaults (FV) have been developed to address this challenge. FE/FV do not require storing any biometric data in backends, and instead generate and store helper data that enables BIA when a new biometric reading is supplied. Security of FE/FV ensures that an adversary obtaining such helper data cannot (efficiently) learn the biometric. Relying on such cryptographic approaches raises the following question: what happens when helper data is lost or destroyed (e.g., due to a failure, or malicious activity), or when new helper data has to be generated (e.g., in response to a breach or to update the system)? Requiring a large number of users to physically re-enroll is impractical, and the literature falls short of addressing this problem. In this paper we develop SNUSE, a secure computation based approach for non-interactive re-enrollment of a large number of users in BIA systems. We prototype SNUSE to illustrate its feasibility, and evaluate its performance and accuracy on two biometric modalities, fingerprints and iris scans. Our results show that thousands of users can be securely re-enrolled in seconds without affecting the accuracy of the system.

Notes

Acknowledgement

This work was funded by the US Department of Homeland Security (DHS) Science and Technology (S&T) Directorate under contract no. HSHQDC-16-C-00034. The views and conclusions contained herein are the authors’ and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DHS or the US government.

References

  1. 1.
    Jain, A.K., Bolle, R.M., Pankanti, S.: Biometrics: Personal Identification in Networked Society, vol. 479. Springer, New York (2006).  https://doi.org/10.1007/978-0-387-32659-7CrossRefGoogle Scholar
  2. 2.
    Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001)CrossRefGoogle Scholar
  3. 3.
    Wikipedia: Office of Personnel Management data breach. https://en.wikipedia.org/wiki/Office_of_Personnel_Management_data_breach. Accessed 5 Dec 2017
  4. 4.
    Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Cryptogr. 38(2), 237–257 (2006).  https://doi.org/10.1007/s10623-005-6343-zMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_10CrossRefGoogle Scholar
  6. 6.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98. ACM (2006)Google Scholar
  7. 7.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, SFCS ’08, pp. 160–164. IEEE (1982)Google Scholar
  9. 9.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)Google Scholar
  10. 10.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_38CrossRefGoogle Scholar
  11. 11.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM (1989)Google Scholar
  12. 12.
    Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_34CrossRefGoogle Scholar
  13. 13.
    Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_22CrossRefGoogle Scholar
  14. 14.
    Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of Reed-Solomon codes. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 232–243. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45465-9_21CrossRefGoogle Scholar
  15. 15.
    Itkis, G., Chandar, V., Fuller, B.W., Campbell, J.P., Cunningham, R.K.: Iris biometric security challenges and possible solutions: for your eyes only? Using the iris as a key. IEEE Sig. Process. Mag. 32(5), 42–53 (2015)CrossRefGoogle Scholar
  16. 16.
    Nandakumar, K., Jain, A.K., Pankanti, S.: Fingerprint-based fuzzy vault: implementation and performance. IEEE Trans. Inf. Forensics Secur. 2(4), 744–757 (2007)CrossRefGoogle Scholar
  17. 17.
    Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_31CrossRefGoogle Scholar
  18. 18.
    Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authentication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 147–163. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_9CrossRefGoogle Scholar
  19. 19.
    Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science. SFCS 1986, pp. 162–167. IEEE Computer Society, Washington, DC (1986).  https://doi.org/10.1109/SFCS.1986.25
  20. 20.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC 1988. ACM (1988)Google Scholar
  21. 21.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40203-6_1CrossRefGoogle Scholar
  22. 22.
    Archer, D.W., Bogdanov, D., Pinkas, B., Pullonen, P.: Maturity and performance of programmable secure computation. In: IEEE S & P (2016)CrossRefGoogle Scholar
  23. 23.
    Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. J. Cryptol. 23(2), 281–343 (2010).  https://doi.org/10.1007/s00145-009-9040-7MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Huang, Y., Katz, J., Evans, D.: Quid-Pro-Quo-tocols: strengthening semi-honest protocols with dual execution. In: IEEE S & P 2012. IEEE Computer Society (2012)Google Scholar
  25. 25.
    Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_10CrossRefGoogle Scholar
  26. 26.
    Baron, J., El Defrawy, K., Minkovich, K., Ostrovsky, R., Tressler, E.: 5PM: secure pattern matching. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 222–240. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32928-9_13CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ivan De Oliveira Nunes
    • 1
    • 2
    Email author
  • Karim Eldefrawy
    • 1
  • Tancrède Lepoint
    • 1
  1. 1.SRI InternationalMenlo ParkUSA
  2. 2.University of California IrvineIrvineUSA

Personalised recommendations