Advertisement

Chronological Backtracking

  • Alexander Nadel
  • Vadim RyvchinEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10929)

Abstract

Non-Chronological Backtracking (NCB) has been implemented in every modern CDCL SAT solver since the original CDCL solver GRASP. NCB’s importance has never been questioned. This paper argues that NCB is not always helpful. We show how one can implement the alternative to NCB–Chronological Backtracking (CB)–in a modern SAT solver. We demonstrate that CB improves the performance of the winner of the latest SAT Competition, Maple_LCM_Dist, and the winner of the latest MaxSAT Evaluation Open-WBO.

References

  1. 1.
    Ansotegui, C., Bacchus, F., Järvisalo, M., Martins, R. (eds.): MaxSAT evaluation 2017: solver and benchmark descriptions, Department of Computer Science Series of Publications B. University of Helsinki, vol. B-2017-2 (2017)Google Scholar
  2. 2.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2009)Google Scholar
  3. 3.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24605-3_37CrossRefGoogle Scholar
  4. 4.
    Frost, D., Dechter, R.: In search of the best constraint satisfaction search. In: AAAI, pp. 301–306 (1994)Google Scholar
  5. 5.
    Heule, M., Järvisalo, M., Balyo, T.: SAT competition (2017). https://baldur.iti.kit.edu/sat-competition-2017/
  6. 6.
    Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy of modern SAT solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 343–356. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21581-0_27CrossRefzbMATHGoogle Scholar
  7. 7.
    Luo, M., Li, C.-M., Xiao, F., Manyà, F., Lü, Z.: An effective learnt clause minimization approach for CDCL SAT solvers. In: Sierra, C. (ed.), Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 703–711 (2017). ijcai.org
  8. 8.
    Nadel, A., Ryvchin, V.: Chronological backtracking: solvers. goo.gl/ssukuu
  9. 9.
    Neves, M., Martins, R., Janota, M., Lynce, I., Manquinho, V.: Exploiting resolution-based representations for MaxSAT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 272–286. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24318-4_20CrossRefGoogle Scholar
  10. 10.
    Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72788-0_28CrossRefGoogle Scholar
  11. 11.
    Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Comput. Intell. 9(3), 268–299 (1993)CrossRefGoogle Scholar
  12. 12.
    Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere et al. 2, pp. 131–153Google Scholar
  13. 13.
    Marques Silva, J.P., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: ICCAD, pp. 220–227 (1996)Google Scholar
  14. 14.
    Shtrichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 480–494. Springer, Heidelberg (2000).  https://doi.org/10.1007/10722167_36CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Intel CorporationHaifaIsrael

Personalised recommendations