Skip to main content

Constrained Image Generation Using Binarized Neural Networks with Decision Procedures

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2018 (SAT 2018)

Abstract

We consider the problem of binary image generation with given properties. This problem arises in a number of practical applications, including generation of artificial porous medium for an electrode of lithium-ion batteries, for composed materials, etc. A generated image represents a porous medium and, as such, it is subject to two sets of constraints: topological constraints on the structure and process constraints on the physical process over this structure. To perform image generation we need to define a mapping from a porous medium to its physical process parameters. For a given geometry of a porous medium, this mapping can be done by solving a partial differential equation (PDE). However, embedding a PDE solver into the search procedure is computationally expensive. We use a binarized neural network to approximate a PDE solver. This allows us to encode the entire problem as a logical formula. Our main contribution is that, for the first time, we show that this problem can be tackled using decision procedures. Our experiments show that our model is able to produce random constrained images that satisfy both topological and process constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Specifically, we are looking at a transitionally periodic “unit cell” of porous medium assuming that porous medium has a periodic structure [5].

  2. 2.

    GANs exhibit well-known issues with poor convergence that we did not observe as our dataset is quite simple [12].

References

  1. Arunachalam, H., Korneev, S., Battiato, I., Onori, S.: Multiscale modeling approach to determine effective lithium-ion transport properties. In: 2017 American Control Conference (ACC), pp. 92–97, May 2017

    Google Scholar 

  2. Battiato, I., Tartakovsky, D.: Applicability regimes for macroscopic models of reactive transport in porous media. J. Contam. Hydrol. 120–121, 18–26 (2011)

    Article  Google Scholar 

  3. Hermann, H., Elsner, A.: Geometric models for isotropic random porous media: a review. Adv. Mater. Sci. Eng. 2014 (2014)

    Article  Google Scholar 

  4. Pyrcz, M., Deutsch, C.: Geostatistical reservoir modeling (2014)

    Google Scholar 

  5. Hornung, U. (ed.): Homogenization and Porous Media. Interdisciplinary Applied Mathematics, vol. 6. Springer, New York (1997). https://doi.org/10.1007/978-1-4612-1920-0

    Book  MATH  Google Scholar 

  6. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.C., Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, 8–13 December 2014, Montreal, Quebec, Canada, pp. 2672–2680 (2014)

    Google Scholar 

  7. Goodfellow, I.J.: NIPS 2016 tutorial: generative adversarial networks. CoRR abs/1701.00160 (2017)

    Google Scholar 

  8. Osokin, A., Chessel, A., Salas, R.E.C., Vaggi, F.: GANs for biological image synthesis. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2252–2261, October 2017

    Google Scholar 

  9. Korneev, S.: Using convolutional neural network to calculate effective properties of porous electrode. https://sccs.stanford.edu/events/sccs-winter-seminar-dr-slava-korneev

  10. Arunachalam, H., Korneev, S., Battiato, I.: Using convolutional neural network to calculate effective properties of porous electrode. J. Electrochem. Soc. (2018, in preparation to submit)

    Google Scholar 

  11. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR abs/1511.06434 (2015)

    Google Scholar 

  12. Chintala, S.: How to train a GAN? Tips and tricks to make GANs work. https://github.com/soumith/ganhacks

  13. Luke de Oliveira, M.P., Nachman, B.: Tips and tricks for training GANs with physics constraints. In: Workshop at the 31st Conference on Neural Information Processing Systems (NIPS), Deep Learning for Physical Sciences, December 2017

    Google Scholar 

  14. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying properties of binarized deep neural networks. CoRR abs/1709.06662 (2017)

    Google Scholar 

  15. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 4107–4115. Curran Associates Inc., Red Hook (2016)

    Google Scholar 

  16. Cheng, C., Nührenberg, G., Ruess, H.: Verification of binarized neural networks. CoRR abs/1710.03107 (2017)

    Google Scholar 

  17. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: an efficient SMT solver for verifying deep neural networks. arXiv preprint arXiv:1702.01135 (2017)

  18. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_18

    Chapter  Google Scholar 

  19. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  Google Scholar 

  20. Dao, T., Duong, K., Vrain, C.: Constrained clustering by constraint programming. Artif. Intell. 244, 70–94 (2017)

    Article  MathSciNet  Google Scholar 

  21. Ganji, M., Bailey, J., Stuckey, P.J.: A declarative approach to constrained community detection. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 477–494. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_31

    Chapter  Google Scholar 

  22. Guns, T., Dries, A., Nijssen, S., Tack, G., Raedt, L.D.: Miningzinc: a declarative framework for constraint-based mining. Artif. Intell. 244, 6–29 (2017)

    Article  MathSciNet  Google Scholar 

  23. Luke de Oliveira, M.P., Nachman, B.: Generative adversarial networks for simulation. In: 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, August 2017

    Google Scholar 

  24. Hu, Y., Gibson, E., Lee, L.-L., Xie, W., Barratt, D.C., Vercauteren, T., Noble, J.A.: Freehand ultrasound image simulation with spatially-conditioned generative adversarial networks. In: Cardoso, M.J., et al. (eds.) CMMI/SWITCH/RAMBO -2017. LNCS, vol. 10555, pp. 105–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67564-0_11

    Chapter  Google Scholar 

  25. Ravanbakhsh, S., Lanusse, F., Mandelbaum, R., Schneider, J.G., Póczos, B.: Enabling dark energy science with deep generative models of galaxy images. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San Francisco, California, USA, pp. 1488–1494. AAAI Press (2017)

    Google Scholar 

  26. Deng, L., Jiao, P., Pei, J., Wu, Z., Li, G.: Gated XNOR networks: deep neural networks with ternary weights and activations under a unified discretization framework. CoRR abs/1705.09283 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Narodytska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korneev, S., Narodytska, N., Pulina, L., Tacchella, A., Bjorner, N., Sagiv, M. (2018). Constrained Image Generation Using Binarized Neural Networks with Decision Procedures. In: Beyersdorff, O., Wintersteiger, C. (eds) Theory and Applications of Satisfiability Testing – SAT 2018. SAT 2018. Lecture Notes in Computer Science(), vol 10929. Springer, Cham. https://doi.org/10.1007/978-3-319-94144-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94144-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94143-1

  • Online ISBN: 978-3-319-94144-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics