Abstract
Land plants dominate nearly every terrestrial habitat and include some of the largest and longest-lived organisms on earth. They are well known for their sexual diversity, reflecting tremendous variation in sex expression, and elaborate reproductive structures and behaviors. Much of what we understand about plant sexual diversity comes from studies of a single group—the flowering plants. Here, we discuss our current state of knowledge about sexual systems across the land plants and how principles and concepts derived from studies of angiosperms can (or cannot) be applied to mosses, hornworts, liverworts, ferns, fern allies, and gymnosperms. First, we show how variation in the expression and lability of sexual systems across the land-plant phylogeny raises fundamental questions about sexual-system evolution. Second, we discuss selective mechanisms, focusing specifically on polyploidy as a mechanism that may either constrain or facilitate evolutionary changes in sexual systems. Finally, we compare ecological traits that are commonly associated with alternate sexual systems in angiosperms and their (not so obvious) cognates in other land-plant groups.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ashman TL, Kwok A, Husband BC (2013) Revisiting the dioecy-polyploidy association: alternate pathways and research opportunities. Cytogenet Genome Res 140(2–4):241–255
Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Chris Pires J, Rice W, Valenzuela N (2011) Are all sex chromosomes created equal? Trends Genet 27(9):350–357
Barker MS (2013) Karyotype and genome evolution in pteridophytes. In: Greilhuber J, Dolezel J, Wendel J (eds) Plant genome diversity, vol 2. Springer, Berlin, pp 245–253
Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284
Bateman RM, Dimichele WA (1994) Heterospory: the most iterative key innovation in the evolutionary history of the plant kingdom. Biol Rev 69(3):345–417
Bateman RM, Dimichele WA (2002) Generating and filtering major phenotypic novelties: neoGoldschmidtian saltation revisited. In: Cronk QCB, Bateman RM, Hawkins JA (eds) Developmental genetics and plant evolution. London, Taylor and Francis, pp 109–159
Bateman RM, Hilton J, Rudall P (2011) Spatial separation and developmental divergence of male and female reproductive units in gymnosperms, and their relevance to the origin of the angiosperm flower. In: Wanntorp L, DeCraene LPR (eds) Flowers on the tree of life. Cambridge University Press, Cambridge, pp 8–48
Bisang I, Ehrlén J, Persson C, Hedenäs L (2014) Family affiliation, sex ratio and sporophyte frequency in unisexual mosses. Bot J Linn Soc 174:163–172
Blank CM, Levin RA, Miller JS (2014) Intraspecific variation in gender strategies in Lycium (Solanaceae): associations with ploidy and changes in floral form following the evolution of gender dimorphism. Am J Bot 101(12):2160–2168
Burleigh JG, Brad Barbazuk W, Davis JM, Morse AM, Soltis PS (2012) Exploring diversification and genome size evolution in extant gymnosperms through phylogenetic synthesis. J Bot 2012(3):1–6
Cargill DC, Vella NGF, Sharma I, Miller JT (2013) Cryptic speciation and species diversity among Australian and New Zealand Hornwort Taxa of Megaceros (Dendrocerotaceae). Aust Syst Bot 26(5):356–377
Crawford M, Jesson LK, Garnock-Jones PJ (2009) Correlated evolution of sexual system and life-history traits in mosses. Evolution 63(5):1129–1142
Cronberg N, Natcheva R, Hedlund K (2006) Microarthropods mediate sperm transfer in Mosses. Science 313(5791):1255
Cronk Q (2009) Sporangium to seed. In: The molecular organography of plants. Oxford University Press, Oxford, pp 122–196
Delph L, Wolf DE (2005) Evolutionary consequences of gender plasticity in genetically dimorphic breeding systems. New Phytol 166:119–128
DeSoto L, Quintanilla LG, Méndez M (2008) Environmental sex determination in ferns: effects of nutrient availability and individual density in Woodwardia radicans. J Ecol 96(6):1319–1327
Devos N, Renner MAM, Gradstein R, Jonathan Shaw A, Laenen B, Vanderpoorten A (2011) Evolution of sexual systems, dispersal strategies and habitat selection in the Liverwort Genus Radula. New Phytol 192(1):225–236
Donoghue MJ (1989) Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43(6):1137–1165
Duminil J, Hardy OJ, Petit RJ (2009) Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evol Biol 9(1):177
Durand R, Durand B (1992) Dioecy, monoecy, polyploidy and speciation in annual mercuries. Bull Soc Bot Fr Lett Bot 139:377–399
Endress PK, Doyle JA (2015) Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. Taxon 64:1093–1116
Engel JJ, Glenny D (2008) A flora of the liverworts and Hornworts of New Zealand, vol 1. Missouri Botanical Garden Press, St. Louis
Eppley SM, Jesson LK (2008) Moving to mate: the evolution of separate and combined sexes in multicellular organisms. J Evol Biol 21(3):727–736
Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann Bot 103(9):1515–1527
Haig D (2016) Living together, living apart: the sexual lives of bryophytes. Philos Trans B 371:20150535
Haufler CH (2014) Ever Since Klekowski: testing a set of radical hypotheses revives the genetics of ferns and lycophytes. Am J Bot 101(12):2036–2042
Heilbuth JC (2000) Lower species richness in dioecious clades. Am Nat 156(3):221–241
Heilbuth JC, Ilves KL, Otto SP (2001) The consequences of dioecy for seed dispersal: modeling the seed-shadow handicap. Evolution 55(5):880–888
Igic B, Lande R, Kohn JR (2008) Loss of self-incompatibility and its evolutionary consequences. Int J Plant Sci 169(1):93–104
Jesson LK, Garnock-Jones PJ (2012) Can classifications of functional gender be extended to all land plants? Perspect Plant Ecol Evol Syst 14(2):153–160
Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473(7345):97–100
Käfer J, de Boer HJ, Mousset S, Kool A, Dufäy M, Marais GAB (2014) Dioecy is associated with higher diversification rates in flowering plants. J Evol Biol 27(7):1478–1490
Klekowski EJ, Baker HG (1966) Evolutionary significance of polyploidy in the pteridophyta. Science 153(3733):305–307
Korpelainen H (1998) Labile sex expression in plants. Biol Rev 73:157–180
Laenen B, Antonin M, S Robbert Gradstein, Shaw B, Patiño J, Désamoré A, Goffinet B, Cox CJ, Jonathan Shaw A, Vanderpoorten A (2016) Increased diversification rates follow shifts to bisexuality in liverworts. New Phytol. https://doi.org/10.1111/nph.13835
Leslie AB, Beaulieu JM, Crane PR, Donoghue MJ (2013) Explaining the distribution of breeding and dispersal syndromes in conifers. Proc R Soc Lond B Biol Sci 280(1770):20131812. https://doi.org/10.1098/rspb.2013.1812
Lloyd DG (1982) Selection of combined versus separate sexes in seed plants. Am Nat 120(5):571–585
Longton RE, Schuster RM (1983) Reproductive biology. In: Schuster RM (ed) New manual of bryology. Hattori Botanical Laboratory, Nichinan, pp 386–463
McDaniel SF, Willis JH, Jonathan Shaw A (2007) A linkage map reveals a complex basis for segregation distortion in an interpopulation cross in the moss Ceratodon purpureus. Genetics 176(4):2489–2500
McDaniel SF, Atwood J, Gordon Burleigh J (2012) Recurrent evolution of dioecy in bryophytes. Evolution 67(2):567–572
Miller JS, Venable DL (2000) Polyploidy and the evolution of gender dimorphism in plants. Science 289(5488):2335–2338
Miller JS, Venable DL (2002) The transition to gender dimorphism on an evolutionary background of self-incompatibility: an example from Lycium (Solanaceae). Am J Bot 89(12):1907–1915
Norrell TE, Jones KS, Payton AC, McDaniel SF (2014) Meiotic sex ratio variation in natural populations of Ceratodon purpureus (Ditrichaceae). Am J Bot 101(9):1572–1576
Obbard DJ, Harris SA, Buggs RJA, Pannell JR (2006) Hybridization, polyploidy, and the evolution of sexual systems in Mercurialis (Euphorbiaceae). Evolution 60(9):1801–1815
Obeso JR (2002) The costs of reproduction in plants. New Phytol 155(3):321–348
Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34(1):401–437
Pannell J (1997) Mixed genetic and environmental sex determination in an androdioecious population of Mercurialis annua. Heredity 78:50–56
Pannell JR, Obbard DJ, Buggs RJA (2004) Polyploidy and the sexual system: what can we learn from Mercurialis annua? Biol J Linn Soc 82(4):547–560
Perley DS, Jesson LK (2015) Hybridization is associated with changes in sexual system in the bryophyte genus Atrichum. Am J Bot 102(4):555–565
Ranker TA, Geiger JO (2008) Population genetics. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, pp 107–133
Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101(10):1588–1596
Renner SS (2016) Pathways for making unisexual flowers and unisexual plants: moving beyond the ‘two mutations linked on one chromosome’ model. Am J Bot 1–3. https://doi.org/10.3732/ajb.1600029
Ricca M, Shaw AJ (2010) Allopolyploidy and homoploid hybridization in the Sphagnum subsecundum Complex (Sphagnaceae: Bryophyta). Biol J Linn Soc 99(1):135–151
Rosenstiel TN, Shortlidge EE, Melnychenko AN, Pankow JF, Eppley SM (2012) Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. Nature 489(7416):431–433
Russell JRW, Pannell JR (2014) Sex determination in dioecious Mercurialis annua and its close diploid and polyploid relatives. Heredity 114(3):262–271
Sabath N, Goldberg EE, Click L, Einhorn M, Ashman T-L, Ming R, Otto SP, Vamosi JC, Mayrose I (2016) Dioecy does not consistently accelerate or slow lineage diversification across multiple genera of angiosperms. New Phytol 209:1290–1300
Sakai AK, Weller SG (1999) Gender and sexual dimorphism in flowering plants: a review of terminology, biogeographic patterns, ecological correlates, and phylogenetic approaches. In: Geber MA, Dawson TD, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 1–31
Sauquet H, von Balthazar M, Magallón S, Doyle JA, Endress PK, Bailes EJ, de Morais EB, Bull-Hereñu K, Carrive L, Chartier M, Chomicki G, Coiro M, Cornette R, El Ottra JHL, Epicoco C, Foster CSP, Jabbour F, Haevermans A, Haevermans T, Hernández R, Little SA, Löfstrand S, Luna JA, Massoni J, Nadot S, Pamperl S, Prieu C, Reyes E, dos Santos P, Schoonderwoerd KM, Sontag S, Soulebeau A, Staedler Y, Tschan GF, Leung AW-S, Schönenberger J (2017) The ancestral flower of angiosperms and its early diversification. Nat Commun 8:16047. https://doi.org/10.1038/ncomms16047
Scofield DG, Schultz ST (2006) Mitosis, stature and evolution of plant mating systems: low-phi and high-phi plants. Proc R Soc Lond B: Biol Sci 273(1584):275–282
Stark LR, Nicholas McLetchie D, Eppley SM (2010) Sex ratios and the shy male hypothesis in the moss Bryum argenteum (Bryaceae). Bryologist 113(4):788–797
Szovenyi P, Devos N, Weston DJ, Yang X, Hock Z, Shaw JA, Shimizu KK, McDaniel SF, Wagner A (2014) Efficient purging of deleterious mutations in plants with haploid selfing. Genome Biol Evol 6(5):1238–1252
Taylor PJ, Eppley SM, Jesson LK (2007) Sporophytic inbreeding depression in mosses occurs in a species with separate sexes but not in a species with combined sexes. Am J Bot 94(11):1853–1859
The Plant List (2013) Version 1.1. Published on the internet. http://www.theplantlist.org
Vamosi JC, Vamosi SM (2004) The role of diversification in causing the correlates of dioecy. Evolution 58(4):723–731
Vamosi JC, Otto SP, Barrett SCH (2003) Phylogenetic analysis of the ecological correlates of dioecy in angiosperms. J Evol Biol 16(5):1006–1018
Vega-Frutis R, Macías-Ordóñez R, Guevara R, Fromhage L (2014) Sex change in plants and animals: a unified perspective. J Evol Biol 27(4):667–675
Vilas JS, Pannell JR (2012) Do plants adjust their sex allocation and secondary sexual morphology in response to their neighbours? Ann Bot 110(7):1471–1478
Villarreal JC, Renner SS (2013) Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evol Biol 13:239
Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA 111(45):E4859–E4868
Yeung K, Miller JS, Savage AE, Husband BC, Igic B, Kohn JR (2005) Association of ploidy and sexual system in Lycium californicum (Solanaceae). Evolution 59(9):2048–2055
Acknowledgments
The authors are grateful to Janet L. Leonard for inviting our contribution and to John R. Pannell, Sean Graham, and an anonymous reviewer for providing comments on earlier versions of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Case, A.L., Jesson, L.K. (2018). Phylogeny, Evolution, and Ecology of Sexual Systems Across the Land Plants. In: Leonard, J. (eds) Transitions Between Sexual Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-94139-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-94139-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94137-0
Online ISBN: 978-3-319-94139-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)