Skip to main content

Phylogeny, Evolution, and Ecology of Sexual Systems Across the Land Plants

  • Chapter
  • First Online:
Transitions Between Sexual Systems

Abstract

Land plants dominate nearly every terrestrial habitat and include some of the largest and longest-lived organisms on earth. They are well known for their sexual diversity, reflecting tremendous variation in sex expression, and elaborate reproductive structures and behaviors. Much of what we understand about plant sexual diversity comes from studies of a single group—the flowering plants. Here, we discuss our current state of knowledge about sexual systems across the land plants and how principles and concepts derived from studies of angiosperms can (or cannot) be applied to mosses, hornworts, liverworts, ferns, fern allies, and gymnosperms. First, we show how variation in the expression and lability of sexual systems across the land-plant phylogeny raises fundamental questions about sexual-system evolution. Second, we discuss selective mechanisms, focusing specifically on polyploidy as a mechanism that may either constrain or facilitate evolutionary changes in sexual systems. Finally, we compare ecological traits that are commonly associated with alternate sexual systems in angiosperms and their (not so obvious) cognates in other land-plant groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ashman TL, Kwok A, Husband BC (2013) Revisiting the dioecy-polyploidy association: alternate pathways and research opportunities. Cytogenet Genome Res 140(2–4):241–255

    Article  Google Scholar 

  • Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Chris Pires J, Rice W, Valenzuela N (2011) Are all sex chromosomes created equal? Trends Genet 27(9):350–357

    Article  CAS  Google Scholar 

  • Barker MS (2013) Karyotype and genome evolution in pteridophytes. In: Greilhuber J, Dolezel J, Wendel J (eds) Plant genome diversity, vol 2. Springer, Berlin, pp 245–253

    Chapter  Google Scholar 

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284

    Article  CAS  Google Scholar 

  • Bateman RM, Dimichele WA (1994) Heterospory: the most iterative key innovation in the evolutionary history of the plant kingdom. Biol Rev 69(3):345–417

    Article  Google Scholar 

  • Bateman RM, Dimichele WA (2002) Generating and filtering major phenotypic novelties: neoGoldschmidtian saltation revisited. In: Cronk QCB, Bateman RM, Hawkins JA (eds) Developmental genetics and plant evolution. London, Taylor and Francis, pp 109–159

    Chapter  Google Scholar 

  • Bateman RM, Hilton J, Rudall P (2011) Spatial separation and developmental divergence of male and female reproductive units in gymnosperms, and their relevance to the origin of the angiosperm flower. In: Wanntorp L, DeCraene LPR (eds) Flowers on the tree of life. Cambridge University Press, Cambridge, pp 8–48

    Chapter  Google Scholar 

  • Bisang I, Ehrlén J, Persson C, Hedenäs L (2014) Family affiliation, sex ratio and sporophyte frequency in unisexual mosses. Bot J Linn Soc 174:163–172

    Article  Google Scholar 

  • Blank CM, Levin RA, Miller JS (2014) Intraspecific variation in gender strategies in Lycium (Solanaceae): associations with ploidy and changes in floral form following the evolution of gender dimorphism. Am J Bot 101(12):2160–2168

    Article  Google Scholar 

  • Burleigh JG, Brad Barbazuk W, Davis JM, Morse AM, Soltis PS (2012) Exploring diversification and genome size evolution in extant gymnosperms through phylogenetic synthesis. J Bot 2012(3):1–6

    Google Scholar 

  • Cargill DC, Vella NGF, Sharma I, Miller JT (2013) Cryptic speciation and species diversity among Australian and New Zealand Hornwort Taxa of Megaceros (Dendrocerotaceae). Aust Syst Bot 26(5):356–377

    Article  Google Scholar 

  • Crawford M, Jesson LK, Garnock-Jones PJ (2009) Correlated evolution of sexual system and life-history traits in mosses. Evolution 63(5):1129–1142

    Article  Google Scholar 

  • Cronberg N, Natcheva R, Hedlund K (2006) Microarthropods mediate sperm transfer in Mosses. Science 313(5791):1255

    Article  CAS  Google Scholar 

  • Cronk Q (2009) Sporangium to seed. In: The molecular organography of plants. Oxford University Press, Oxford, pp 122–196

    Chapter  Google Scholar 

  • Delph L, Wolf DE (2005) Evolutionary consequences of gender plasticity in genetically dimorphic breeding systems. New Phytol 166:119–128

    Article  Google Scholar 

  • DeSoto L, Quintanilla LG, Méndez M (2008) Environmental sex determination in ferns: effects of nutrient availability and individual density in Woodwardia radicans. J Ecol 96(6):1319–1327

    Article  Google Scholar 

  • Devos N, Renner MAM, Gradstein R, Jonathan Shaw A, Laenen B, Vanderpoorten A (2011) Evolution of sexual systems, dispersal strategies and habitat selection in the Liverwort Genus Radula. New Phytol 192(1):225–236

    Article  Google Scholar 

  • Donoghue MJ (1989) Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43(6):1137–1165

    Article  Google Scholar 

  • Duminil J, Hardy OJ, Petit RJ (2009) Plant traits correlated with generation time directly affect inbreeding depression and mating system and indirectly genetic structure. BMC Evol Biol 9(1):177

    Article  Google Scholar 

  • Durand R, Durand B (1992) Dioecy, monoecy, polyploidy and speciation in annual mercuries. Bull Soc Bot Fr Lett Bot 139:377–399

    Google Scholar 

  • Endress PK, Doyle JA (2015) Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. Taxon 64:1093–1116

    Article  Google Scholar 

  • Engel JJ, Glenny D (2008) A flora of the liverworts and Hornworts of New Zealand, vol 1. Missouri Botanical Garden Press, St. Louis

    Google Scholar 

  • Eppley SM, Jesson LK (2008) Moving to mate: the evolution of separate and combined sexes in multicellular organisms. J Evol Biol 21(3):727–736

    Article  CAS  Google Scholar 

  • Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann Bot 103(9):1515–1527

    Article  Google Scholar 

  • Haig D (2016) Living together, living apart: the sexual lives of bryophytes. Philos Trans B 371:20150535

    Article  Google Scholar 

  • Haufler CH (2014) Ever Since Klekowski: testing a set of radical hypotheses revives the genetics of ferns and lycophytes. Am J Bot 101(12):2036–2042

    Article  Google Scholar 

  • Heilbuth JC (2000) Lower species richness in dioecious clades. Am Nat 156(3):221–241

    Article  Google Scholar 

  • Heilbuth JC, Ilves KL, Otto SP (2001) The consequences of dioecy for seed dispersal: modeling the seed-shadow handicap. Evolution 55(5):880–888

    Article  CAS  Google Scholar 

  • Igic B, Lande R, Kohn JR (2008) Loss of self-incompatibility and its evolutionary consequences. Int J Plant Sci 169(1):93–104

    Article  Google Scholar 

  • Jesson LK, Garnock-Jones PJ (2012) Can classifications of functional gender be extended to all land plants? Perspect Plant Ecol Evol Syst 14(2):153–160

    Article  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473(7345):97–100

    Article  CAS  Google Scholar 

  • Käfer J, de Boer HJ, Mousset S, Kool A, Dufäy M, Marais GAB (2014) Dioecy is associated with higher diversification rates in flowering plants. J Evol Biol 27(7):1478–1490

    Article  Google Scholar 

  • Klekowski EJ, Baker HG (1966) Evolutionary significance of polyploidy in the pteridophyta. Science 153(3733):305–307

    Article  Google Scholar 

  • Korpelainen H (1998) Labile sex expression in plants. Biol Rev 73:157–180

    Article  Google Scholar 

  • Laenen B, Antonin M, S Robbert Gradstein, Shaw B, Patiño J, Désamoré A, Goffinet B, Cox CJ, Jonathan Shaw A, Vanderpoorten A (2016) Increased diversification rates follow shifts to bisexuality in liverworts. New Phytol. https://doi.org/10.1111/nph.13835

    Article  Google Scholar 

  • Leslie AB, Beaulieu JM, Crane PR, Donoghue MJ (2013) Explaining the distribution of breeding and dispersal syndromes in conifers. Proc R Soc Lond B Biol Sci 280(1770):20131812. https://doi.org/10.1098/rspb.2013.1812

    Article  Google Scholar 

  • Lloyd DG (1982) Selection of combined versus separate sexes in seed plants. Am Nat 120(5):571–585

    Article  Google Scholar 

  • Longton RE, Schuster RM (1983) Reproductive biology. In: Schuster RM (ed) New manual of bryology. Hattori Botanical Laboratory, Nichinan, pp 386–463

    Google Scholar 

  • McDaniel SF, Willis JH, Jonathan Shaw A (2007) A linkage map reveals a complex basis for segregation distortion in an interpopulation cross in the moss Ceratodon purpureus. Genetics 176(4):2489–2500

    Article  CAS  Google Scholar 

  • McDaniel SF, Atwood J, Gordon Burleigh J (2012) Recurrent evolution of dioecy in bryophytes. Evolution 67(2):567–572

    Article  Google Scholar 

  • Miller JS, Venable DL (2000) Polyploidy and the evolution of gender dimorphism in plants. Science 289(5488):2335–2338

    Article  CAS  Google Scholar 

  • Miller JS, Venable DL (2002) The transition to gender dimorphism on an evolutionary background of self-incompatibility: an example from Lycium (Solanaceae). Am J Bot 89(12):1907–1915

    Article  Google Scholar 

  • Norrell TE, Jones KS, Payton AC, McDaniel SF (2014) Meiotic sex ratio variation in natural populations of Ceratodon purpureus (Ditrichaceae). Am J Bot 101(9):1572–1576

    Article  Google Scholar 

  • Obbard DJ, Harris SA, Buggs RJA, Pannell JR (2006) Hybridization, polyploidy, and the evolution of sexual systems in Mercurialis (Euphorbiaceae). Evolution 60(9):1801–1815

    Article  CAS  Google Scholar 

  • Obeso JR (2002) The costs of reproduction in plants. New Phytol 155(3):321–348

    Article  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34(1):401–437

    Article  CAS  Google Scholar 

  • Pannell J (1997) Mixed genetic and environmental sex determination in an androdioecious population of Mercurialis annua. Heredity 78:50–56

    Article  CAS  Google Scholar 

  • Pannell JR, Obbard DJ, Buggs RJA (2004) Polyploidy and the sexual system: what can we learn from Mercurialis annua? Biol J Linn Soc 82(4):547–560

    Article  Google Scholar 

  • Perley DS, Jesson LK (2015) Hybridization is associated with changes in sexual system in the bryophyte genus Atrichum. Am J Bot 102(4):555–565

    Article  Google Scholar 

  • Ranker TA, Geiger JO (2008) Population genetics. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, pp 107–133

    Chapter  Google Scholar 

  • Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101(10):1588–1596

    Article  Google Scholar 

  • Renner SS (2016) Pathways for making unisexual flowers and unisexual plants: moving beyond the ‘two mutations linked on one chromosome’ model. Am J Bot 1–3. https://doi.org/10.3732/ajb.1600029

    Article  CAS  Google Scholar 

  • Ricca M, Shaw AJ (2010) Allopolyploidy and homoploid hybridization in the Sphagnum subsecundum Complex (Sphagnaceae: Bryophyta). Biol J Linn Soc 99(1):135–151

    Article  Google Scholar 

  • Rosenstiel TN, Shortlidge EE, Melnychenko AN, Pankow JF, Eppley SM (2012) Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. Nature 489(7416):431–433

    Article  CAS  Google Scholar 

  • Russell JRW, Pannell JR (2014) Sex determination in dioecious Mercurialis annua and its close diploid and polyploid relatives. Heredity 114(3):262–271

    Article  Google Scholar 

  • Sabath N, Goldberg EE, Click L, Einhorn M, Ashman T-L, Ming R, Otto SP, Vamosi JC, Mayrose I (2016) Dioecy does not consistently accelerate or slow lineage diversification across multiple genera of angiosperms. New Phytol 209:1290–1300

    Article  CAS  Google Scholar 

  • Sakai AK, Weller SG (1999) Gender and sexual dimorphism in flowering plants: a review of terminology, biogeographic patterns, ecological correlates, and phylogenetic approaches. In: Geber MA, Dawson TD, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 1–31

    Google Scholar 

  • Sauquet H, von Balthazar M, Magallón S, Doyle JA, Endress PK, Bailes EJ, de Morais EB, Bull-Hereñu K, Carrive L, Chartier M, Chomicki G, Coiro M, Cornette R, El Ottra JHL, Epicoco C, Foster CSP, Jabbour F, Haevermans A, Haevermans T, Hernández R, Little SA, Löfstrand S, Luna JA, Massoni J, Nadot S, Pamperl S, Prieu C, Reyes E, dos Santos P, Schoonderwoerd KM, Sontag S, Soulebeau A, Staedler Y, Tschan GF, Leung AW-S, Schönenberger J (2017) The ancestral flower of angiosperms and its early diversification. Nat Commun 8:16047. https://doi.org/10.1038/ncomms16047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scofield DG, Schultz ST (2006) Mitosis, stature and evolution of plant mating systems: low-phi and high-phi plants. Proc R Soc Lond B: Biol Sci 273(1584):275–282

    Article  Google Scholar 

  • Stark LR, Nicholas McLetchie D, Eppley SM (2010) Sex ratios and the shy male hypothesis in the moss Bryum argenteum (Bryaceae). Bryologist 113(4):788–797

    Article  Google Scholar 

  • Szovenyi P, Devos N, Weston DJ, Yang X, Hock Z, Shaw JA, Shimizu KK, McDaniel SF, Wagner A (2014) Efficient purging of deleterious mutations in plants with haploid selfing. Genome Biol Evol 6(5):1238–1252

    Article  Google Scholar 

  • Taylor PJ, Eppley SM, Jesson LK (2007) Sporophytic inbreeding depression in mosses occurs in a species with separate sexes but not in a species with combined sexes. Am J Bot 94(11):1853–1859

    Article  Google Scholar 

  • The Plant List (2013) Version 1.1. Published on the internet. http://www.theplantlist.org

  • Vamosi JC, Vamosi SM (2004) The role of diversification in causing the correlates of dioecy. Evolution 58(4):723–731

    Article  Google Scholar 

  • Vamosi JC, Otto SP, Barrett SCH (2003) Phylogenetic analysis of the ecological correlates of dioecy in angiosperms. J Evol Biol 16(5):1006–1018

    Article  CAS  Google Scholar 

  • Vega-Frutis R, Macías-Ordóñez R, Guevara R, Fromhage L (2014) Sex change in plants and animals: a unified perspective. J Evol Biol 27(4):667–675

    Article  CAS  Google Scholar 

  • Vilas JS, Pannell JR (2012) Do plants adjust their sex allocation and secondary sexual morphology in response to their neighbours? Ann Bot 110(7):1471–1478

    Article  Google Scholar 

  • Villarreal JC, Renner SS (2013) Correlates of monoicy and dioicy in hornworts, the apparent sister group to vascular plants. BMC Evol Biol 13:239

    Article  Google Scholar 

  • Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S et al (2014) Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA 111(45):E4859–E4868

    Article  CAS  Google Scholar 

  • Yeung K, Miller JS, Savage AE, Husband BC, Igic B, Kohn JR (2005) Association of ploidy and sexual system in Lycium californicum (Solanaceae). Evolution 59(9):2048–2055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Janet L. Leonard for inviting our contribution and to John R. Pannell, Sean Graham, and an anonymous reviewer for providing comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea L. Case .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Case, A.L., Jesson, L.K. (2018). Phylogeny, Evolution, and Ecology of Sexual Systems Across the Land Plants. In: Leonard, J. (eds) Transitions Between Sexual Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-94139-4_2

Download citation

Publish with us

Policies and ethics