Skip to main content

Turbulence Modelling

  • Chapter
  • First Online:
Ambit Stochastics

Abstract

Ambit fields were introduced by a need for sophisticated stochastic models in turbulence. We present in this chapter a detailed study of the statistical theory of homogeneous turbulence in view of volatility modulated Volterra processes and ambit fields. After a review of the statistical theory due to Kolmogorov-Obukhov, with a particular emphasis on scaling laws, we discuss ambit fields and various subclasses and their relevance to turbulence. In particular, the concept of correlators is shown to be nicely analysed in the framework of ambit fields. Furthermore, energy dissipation goes hand in hand with power variation, and one can resort to the general theory presented in Chap. 3 to analyse this central object in turbulence. An empirical study of Helium gas jet flow is presented where some striking results in the context of ambit stochastics can be observed. Next we discuss purely temporal, purely spatial and one-dimensional turbulence to some detail using specific cases of ambit fields and volatility modulated Volterra processes. We are grateful to Jrgen Schmiegel (University of Aarhus) for co-authoring this chapter with us.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reader should not confuse an exponentiated trawl field with the concept of exponential trawl function discussed in Sect. 8.3.2, the latter referring to a specific definition of the ambit/trawl set.

  2. 2.

    Recall that we have reserved the name cumulant for the logarithm of the characteristic function.

  3. 3.

    For spectral functions in turbulence, see Monin and Yaglom (1975, Chapter 6). The spectral density function is defined as \(\frac {1}{2}\) times the sum of the diagonal elements of the Fourier transform of the covariance matrix R.

  4. 4.

    The data consist of 20 million one-point measurements of the longitudinal component of the wind velocity in the atmospheric boundary layer, 35 m above ground. The measurements were performed using a hot-wire anemometer and sampled at 5kHz. The time series can be assumed to be stationary. See Hedevang and Schmiegel (2014) and Dhruva (2000) for details.

References

  • Barndorff-Nielsen, O. E., Blæsild, P. & Schmiegel, J. (2004), ‘A parsimonious and universal description of turbulent velocity increments’, The European Physical Journal B - Condensed Matter and Complex Systems 41(3), 345–363.

    Article  Google Scholar 

  • Barndorff-Nielsen, O. E. & Schmiegel, J. (2004), ‘Lévy-based tempo-spatial modelling; with applications to turbulence’, Uspekhi Mat. NAUK 59, 63–90.

    Article  Google Scholar 

  • Barndorff-Nielsen, O. E. & Schmiegel, J. (2008), ‘A stochastic differential equation framework for the timewise dynamics of turbulent velocities’, Theory of Probability and its Applications 52(3), 372–388.

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen, O. E. & Schmiegel, J. (2009), Brownian semistationary processes and volatility/intermittency, in H. Albrecher, W. Rungaldier & W. Schachermeyer, eds, ‘Advanced Financial Modelling’, Radon Series on Computational and Applied Mathematics 8, W. de Gruyter, Berlin, pp. 1–26.

    MATH  Google Scholar 

  • Bennedsen, M., Lunde, A. & Pakkanen, M. S. (2016), ‘Decoupling the short- and long-term behavior of stochastic volatility’, arXiv:1610.00332.

    Google Scholar 

  • Birnir, B. (2013a), ‘The Kolmogorov-Obukhov statistical theory of turbulence’, Journal of Nonlinear Science 23(4), 657–688.

    Article  MathSciNet  MATH  Google Scholar 

  • Birnir, B. (2013b), The Kolmogorov-Obukhov Theory of Turbulence, Springer, New York.

    Google Scholar 

  • Birnir, B. (2014), ‘The Kolmogorov Obukhov-She-Leveque scaling in turbulence’, Communications on Pure and Applied Analysis 13, 1737–1757.

    Article  MathSciNet  MATH  Google Scholar 

  • Castro, J., Carsteanu, A. & Fuentes, J. (2011), ‘On the phenomenology underlying Taylor’s hypothesis in atmospheric turbulence’, Revista Mexicana de Física 57, 60–88.

    Google Scholar 

  • Dhruva, B. R. (2000), An experimental study of high Reynolds number turbulence in the atmosphere, PhD thesis, Yale University.

    Google Scholar 

  • Dubrulle, B. (1994), ‘Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance’, Physical Review Letters 73, 959–962.

    Article  Google Scholar 

  • Frisch, U. (1995), Turbulence – The Legacy of A. N. Kolmogorov, Cambridge University Press.

    Book  MATH  Google Scholar 

  • Gradshteyn, I. & Ryzhik, I. (1996), Table of Integrals, Series and Products, fifth edn, Academic Press, New York.

    Google Scholar 

  • Grahovac, D., Leonenko, N. & Taqqu, M. (2017), Limit theorems and the scaling of moments of integrated finite variance supOU processes. arxiv:1711:09623.

    Google Scholar 

  • Guttorp, P. & Gneiting, T. (2006), ‘On the Matèrn correlation family’, Biometrika 93, 989–995.

    Article  MathSciNet  MATH  Google Scholar 

  • Hedevang, E. & Schmiegel, J. (2013), ‘A causal continuous time stochastic model for the turbulent energy dissipation in a helium jet flow’, Journal of Turbulence 14, 1–26.

    Article  MathSciNet  Google Scholar 

  • Hedevang, E. & Schmiegel, J. (2014), ‘A Lévy based approach to random vector fields: With a view towards turbulence’, International Journal of Nonlinear Sciences and Numerical Simulation 15, 411–435.

    Article  MathSciNet  MATH  Google Scholar 

  • Hosokawa, I., Van Atta, C. W. & Thoroddsen, S. T. (1994), ‘Experimental study of the Kolmogorov refined similarity variable’, Fluid Dynamics Research 13, 329–333.

    Article  Google Scholar 

  • Hsieh, C.-I. & Katul, G. G. (1997), ‘Dissipation methods, Taylor’s hypothesis, and stability correction functions in the atmospheric surface layer’, Journal of Geophysical Research 102, 16391–16405.

    Article  Google Scholar 

  • Kelly, B., Treu, T., Malkan, M., Pancoast, A. & Woo, J.-H. (2013), ‘Active galactic nucleus black hole mass estimates in the era of time domain astronomy’, The Astrophysical Journal 779(2), Article ID 187.

    Google Scholar 

  • Koenig, W. (2016), The Parabolic Anderson Model, Birkhäuser.

    Google Scholar 

  • Kolmogorov, A. (1941a), ‘Dissipation of energy under locally isotropic turbulence’, Doklady Akademii Nauk SSSR 32, 16–18.

    MATH  Google Scholar 

  • Kolmogorov, A. (1941b), ‘The local structure of turbulence in incompressible viscous fluid for very large reynolds number’, Doklady Akademii Nauk SSSR 30, 9–13.

    MathSciNet  Google Scholar 

  • Kolmogorov, A. (1941c), ‘On degeneration of isotropic turbulence in an incompressible viscous fluid’, Doklady Akademii Nauk SSSR 31, 538–540.

    Google Scholar 

  • Kolmogorov, A. (1962), ‘A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at large reynolds number’, Journal of Fluid Mechanics 13, 82–85.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B., Murthi, A., Bowman, K. P., North, G. R., Genton, M. & Sherman, M. (2009), ‘Statistical tests of Taylor’s hypothesis: An application to precipitation fields’, Journal of Hydrometeorology 10, 254–265.

    Article  Google Scholar 

  • Márquez, J. & Schmiegel, J. (2016), Modelling turbulent time series by BSS-processes, in M. Podolskij, R. Stelzer, S. Thorbjørnsen & A. E. D. Veraart, eds, ‘The Fascination of Probability, Statistics and their Applications: In Honour of Ole E. Barndorff-Nielsen’, Springer, pp. 29–52.

    Chapter  Google Scholar 

  • Monin, A. S. & Yaglom, A. M. (1975), Statistical Fluid Mechanics, London: MIT Press.

    Google Scholar 

  • Obukhov, A. (1941), ‘On the distribution of energy in the spectrum of turbulent flow’, Izvestiya Akademii Nauk: Seriya Geograf. Geofiz. 5, 453–466.

    Google Scholar 

  • Obukhov, A. (1962), ‘Some specific features of atmospheric turbulence’, Journal of Fluid Mechanics 13, 77–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Onsager, L. (1949), ‘Statistical hydrodynamics’, Nuovo Cimento 6, 279–287.

    Article  MathSciNet  Google Scholar 

  • Rajput, B. S. & RosiÅ„ski, J. (1989), ‘Spectral representations of infinitely divisible processes’, Probability Theory and Related Fields 82(3), 451–487.

    Article  MathSciNet  MATH  Google Scholar 

  • Richardson, L. F. (1922), Weather prediction by numerical process, Cambridge Mathematical Library, first edn, Cambridge University Press, Cambridge.

    Google Scholar 

  • Schmiegel, J. (2005), ‘Self-scaling of turbulent energy dissipation correlators’, Physics Letters A 337(4–6), 342–353.

    Article  MATH  Google Scholar 

  • Schmiegel, J., Barndorff-Nielsen, O. E. & Eggers, H. C. (2005), ‘A class of spatio-temporal and causal stochastic processes with application to multiscaling and multifractality’, South African Journal of Science 101, 513–519.

    Google Scholar 

  • Schmiegel, J., Cleve, J., Eggers, H. C., Pearson, B. R. & Greiner, M. (2004), ‘Stochastic-energy cascade model for (1+1)-dimensional fully developed turbulence’, Physics Letters A 320, 247–253.

    Article  MATH  Google Scholar 

  • She, Z.-S. & Leveque, E. (1994), ‘Universal scaling laws in fully developed turbulence’, Physical Review Letters 72, 336–339.

    Article  Google Scholar 

  • She, Z. S. & Waymire, E. C. (1995), ‘Quantized energy cascades and log-Poisson statistics in fully developed turbulence’, Physical Review Letters 74, 262–265.

    Article  Google Scholar 

  • Stolovitzky, G., Kailasnath, P. & Sreenivasan, K. R. (1992), ‘Kolmogorov’s refined similarity hypothesis’, Physical Review Letters 69, 1178–1181.

    Article  Google Scholar 

  • Stolovitzky, G. & Sreenivasan, K. R. (1994), ‘Kolmogorov’s refined similarity hypotheses for turbulence and general stochastic processes’, Reviews of Modern Physics 66, 229–239.

    Article  Google Scholar 

  • Taylor, G. I. (1938), ‘The spectrum of turbulence’, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 164(919), 476–490.

    Article  MATH  Google Scholar 

  • Tsinober, A. (2009), An informal conceptual introduction to turbulence, Vol. 92 of Fluid Mechanics and its Applications, Springer, Dordrecht. Second edition of An informal introduction to turbulence.

    MATH  Google Scholar 

  • von Kármánn, T. (1948), ‘Progress in the statistical theory of turbulence’, Proceedings of the National Academy of Sciences of the United States of America 34(11), 530–539.

    Article  MathSciNet  Google Scholar 

  • Wyngaard, J. & Clifford, S. (1977), ‘Taylor’s hypothesis and high-frequency turbulence spectra’, Journal of the Atmospheric Sciences 34, 922–929.

    Article  Google Scholar 

  • Zhu, Y., Antonia, R. A. & Hosokawa, I. (1995), ‘Refined similarity hypotheses for turbulent velocity and temperature fields’, Physics of Fluids 7, 1637–1648.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barndorff-Nielsen, O.E., Benth, F.E., Veraart, A.E.D. (2018). Turbulence Modelling. In: Ambit Stochastics. Probability Theory and Stochastic Modelling, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-319-94129-5_9

Download citation

Publish with us

Policies and ethics