Advertisement

Petri Net Reductions for Counting Markings

  • Bernard Berthomieu
  • Didier Le Botlan
  • Silvano Dal Zilio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10869)

Abstract

We propose a method to count the number of reachable markings of a Petri net without having to enumerate these first. The method relies on a structural reduction system that reduces the number of places and transitions of the net in such a way that we can faithfully compute the number of reachable markings of the original net from the reduced net and the reduction history. The method has been implemented and computing experiments show that reductions are effective on a large benchmark of models.

References

  1. 1.
    Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: 9th Workshop on Algorithm Engineering and Experiments. SIAM (2007)CrossRefGoogle Scholar
  2. 2.
    Berthelot, G.: Checking properties of nets using transformations. In: Rozenberg, G. (ed.) APN 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986).  https://doi.org/10.1007/BFb0016204CrossRefGoogle Scholar
  3. 3.
    Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 359–376. Springer, Heidelberg (1987).  https://doi.org/10.1007/978-3-540-47919-2_13CrossRefGoogle Scholar
  4. 4.
    Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA-construction of abstract state spaces for Petri nets and Time Petri nets. Int. J. Prod. Res. 42(14), 2741–2756 (2004)CrossRefGoogle Scholar
  5. 5.
    Esparza, J., Schröter, C.: Net reductions for LTL model-checking. In: Margaria, T., Melham, T. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 310–324. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44798-9_25CrossRefGoogle Scholar
  6. 6.
    Kordon, F., et al.: Complete Results for the 2017 Edition of the Model Checking Contest, June 2017. http://mcc.lip6.fr/
  7. 7.
    Kordon, F., Garavel, H., Hillah, L.M., Paviot-Adet, E., Jezequel, L., Rodríguez, C., Hulin-Hubard, F.: MCC’2015–the fifth model checking contest. In: Koutny M., Desel J., Kleijn J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol 9930, pp. 262–273. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  8. 8.
    Hack, M.: Decidability questions for Petri Nets. Ph.D. thesis, Massachusetts Institute of Technology (1976)Google Scholar
  9. 9.
    Hillah, L.M., Kordon, F.: Petri nets repository: a tool to benchmark and debug petri net tools. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol. 10258, pp. 125–135. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57861-3_9CrossRefGoogle Scholar
  10. 10.
    Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability analysis of P/T nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307–318. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53401-4_16CrossRefGoogle Scholar
  11. 11.
    Levy, F.K., Thompson, G.L., Wiest, J.D.: Introduction to the Critical-Path Method. Industrial Scheduling. Prentice-Hall, Englewood Cliffs (1963)Google Scholar
  12. 12.
    De Loera, J.A., Hemmecke, R., Köppe, M.: Algebraic and Geometric Ideas in the Theory of Discrete Optimization. SIAM, Philadelphia (2013)zbMATHGoogle Scholar
  13. 13.
    De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. J. Symbolic Comput. 38(4), 1273–1302 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Upper Saddle River (1981)zbMATHGoogle Scholar
  15. 15.
    Recalde, L., Teruel, E., Silva, M.: Improving the decision power of rank theorems. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 4, pp. 3768–3773 (1997)Google Scholar
  16. 16.
    Schmidt, K.: Using petri net invariants in state space construction. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 473–488. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36577-X_35CrossRefGoogle Scholar
  17. 17.
    Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming techniques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-65306-6_19CrossRefGoogle Scholar
  18. 18.
    Stahl, C.: Decomposing petri net state spaces. In: 18th German Workshop on Algorithms and Tools for Petri Nets (AWPN 2011), Hagen, Germany, September 2011Google Scholar
  19. 19.
    Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical set decision diagrams and regular models. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 1–15. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00768-2_1CrossRefzbMATHGoogle Scholar
  20. 20.
    Wolf, K.: Generating petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73094-1_5CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bernard Berthomieu
    • 1
  • Didier Le Botlan
    • 1
  • Silvano Dal Zilio
    • 1
  1. 1.LAAS-CNRS, Université de Toulouse, CNRS, INSAToulouseFrance

Personalised recommendations