Skip to main content

The Sea of Okhotsk: Scientific Applications of Remote Sensing

  • Chapter
  • First Online:
Remote Sensing of the Asian Seas

Abstract

The characteristics of the Sea of Okhotsk have not been adequately explored due to the severe environmental conditions and satellite measurements are particular appealing for their study. Results of remote sensing of the various oceanic and atmospheric dynamic phenomena in the Sea of Okhotsk are reviewed. The multisensor data analysis is considered as the most effective approach for the phenomena detection, interpretation and operational applications. Particular emphasis has been placed on the use of passive and active microwave techniques. Microwave remote sensing provide estimates of the sea surface temperature, surface wind speed, sea ice parameters, atmospheric water vapor content, cloud liquid water content, as well as allows mapping of current and eddy boundaries, the surface manifestations of the internal waves , bottom topography signatures, the organized wind speed variations in the marine boundary layer of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams S, Willmes S, Schröder D, Heinemann G, Bauer M, Krumpen T (2013) Improvement and sensitivity analysis of thermal thin-ice thickness retrievals. IEEE Trans Geosci Remote Sens 53:3306–3318

    Article  Google Scholar 

  • Bobylev L, Zabolotskikh E, Mitnik LM, Mitnik ML (2010) Atmospheric water vapor and cloud liquid water retrieval over the Arctic Ocean using satellite passive microwave sensing. IEEE Trans Geosci Remote Sens 48:283–294

    Article  Google Scholar 

  • Brűmmer B (1999) Roll and cell convection in wintertime Arctic cold air outbreaks. J Atmos Sci 56:2613–2636

    Article  Google Scholar 

  • Comiso J (2010) Polar Ocean from space. Springer, Heidelberg, p 430

    Book  Google Scholar 

  • Dubina VA, Fayman PA, Zhabin IA, Ponomarev VI, Kuzlyakina YA (2012) The Okhotsk Sea currents: satellite imagery and numerical simulation. Curr Probl Remote Sens Earth Space 9(1):206–212 (in Russian)

    Google Scholar 

  • Ebuchi N, Fukamachi Y, Ohshima KI, Shirasawa K, Ishikawa M, Takatsuka T, Daibo T, Wakatsuchi M (2006) Observation of the Soya Warm Current using HF radar. J Oceanogr 62:47–61

    Article  Google Scholar 

  • Ebuchi N, Fukamachi Y, Ohshima KI, Wakatsuchi M (2009) Subinertial and seasonal variations in the Soya Warm current revealed by HF ocean radars, coastal tide gauges and a bottom-mounted ADCP. J Oceanogr 65:31–43

    Article  Google Scholar 

  • Etling D, Brown RA (1993) Roll vortices in the planetary boundary layer: a review. Bound Layer Meteorol 65:215–248

    Article  Google Scholar 

  • Gurvich IA, Mitnik LM, Mitnik ML (2008) Mesoscale cyclogenesis over the Far Eastern Seas: study based on satellite microwave radiometric and radar measurements. Investig Earth Space 5:58–73. (Issledovanie Zemli iz Kosmosa, in Russian)

    Google Scholar 

  • Heygster G, Alexandrov V, Dybkjær G et al (2012) Remote sensing of sea ice: advances during the DAMOCLES project. Cryosphere 6(6):1411–1434

    Article  Google Scholar 

  • Katsaros KB, Mitnik LM, Black PG (2014) Microwave instruments for observing tropical cyclones. In: Tang D, Sui G (eds) Typhoon impacts and crisis management. Springer, Heidelberg, pp 5–61

    Chapter  Google Scholar 

  • Kowalik Z, Polyakov I (1999) Diurnal tides over Kashevarov Bank, Sea of Okhotsk. J Geophys Res 104:5361–5380

    Article  Google Scholar 

  • Lebedev GA, Paramonov AI (2001) Determination of the physical characteristics of sea ice from satellite infrared sensing. Meteorol Hydrol 2:72–80 (in Russian)

    Google Scholar 

  • Liu AQ, Moore GWK, Tsuboki K, Renfrew IA (2006) The effect of the sea-ice zone on the development of boundary-layer roll clouds during cold air outbreaks. Bound Layer Meteorol 118:557–581

    Article  Google Scholar 

  • Mitnik LM (2008) Advanced land observing satellite PALSAR observations of the oceanic dynamic phenomena in the coastal zone. Proc IGARSS 2:351–354

    Google Scholar 

  • Mitnik LM (2009) Mesoscale atmospheric vortices in the Okhotsk and Bering Seas: results of satellite multisensor study. In: Nihoul CJ, Kostianoy AG (eds) Influence of climate change on the changing Arctic and Sub-Arctic conditions. Springer, Dordrecht, The Netherlands, pp 37–56

    Chapter  Google Scholar 

  • Mitnik LM, Dubina VA (2006) Surface currents in the Japan and Okhotsk Seas: study with satellite SAR. In: Proceedings of IGARSS 2006, Denver, Colorado, pp 2394–2395

    Google Scholar 

  • Mitnik L, Dubina V (2007) Spatial-temporal distribution and characteristics of internal waves in the Okhotsk and Japan Seas studied by ERS-1/2 SAR and Envisat ASAR. In: Proceedings of ENVISAT symposium 2007, 23–27 Apr 2007, ESA SP-636, Montreux, Switzerland

    Google Scholar 

  • Mitnik LM, Dubina VA (2010a) Satellite SAR sensing of the Okhotsk Sea: geographical and seasonal features, ESA Publication SP-686, Bergen, Norway, 28 June–2 July 2010

    Google Scholar 

  • Mitnik LM, Dubina VA (2010b) Interpretation of SAR signatures of the sea surface: multisensory approach. In: Barale V, Gower JFR, Alberotanza L (eds) Oceanography from space, revisited. Springer, Dordrecht, pp 113–130

    Chapter  Google Scholar 

  • Mitnik L, Dubina V (2012) Satellite SAR sensing of oceanic dynamics in the Kuril straits area. In: Proceedings of IGARSS 2012, Munich, Germany, 22–27 July 2012, pp 7632–7635

    Google Scholar 

  • Mitnik LM, Dubina VA, Shevchenko GV (2005) ERS SAR and Envisat ASAR observations of oceanic dynamic phenomena in the southwestern Okhotsk Sea. In: Envisat & ERS ESA Symposium, ESA SP-572, Salzburg, Austria, 6–10 Sept 2004

    Google Scholar 

  • Mitnik LM, Kalmykov AI (1992) Structure and dynamics of the Sea of Okhotsk marginal ice zone from “Ocean” satellite radar sensing data. J Geophys Res 97(C5):7429–7445

    Article  Google Scholar 

  • Mitnik LM, Mitnik ML (2003) Retrieval of atmospheric and ocean surface parameters from ADEOS-II AMSR data: comparison of errors of global and regional algorithms. Radio Sci 38(4):8065. https://doi.org/10.1029/2002RS002659

    Article  Google Scholar 

  • Mitnik LM, Mitnik ML (2007) Passive and active microwave sensing of cold air outbreaks over the Northwest Pacific Ocean. In: Proceedings of IGARSS’07, Barcelona, 23–27 July

    Google Scholar 

  • Mitnik LM, Mitnik ML (2009) Modeling of microwave characteristics of organized mesoscale convection over the ocean. Currt Probl Remote Sens Earth Space 6(2):147–154 (in Russian)

    Google Scholar 

  • Mitnik LM, Mitnik ML (2010) AMSR-E advanced wind speed retrieval algorithm and its application to marine weather systems. In: Proceedings of IGARSS 2010, Hawaii, pp 3224–3227

    Google Scholar 

  • Mitnik LM, Mitnik ML, Dubina VA (2007) Remote radiophysical sensing of the ocean—atmosphere system. In: Akulichev VA (ed) Far Eastern Seas of Russia. Book 4. Physical methods of research. Nauka Publishing House, Moscow, pp 449–537 (in Russian)

    Google Scholar 

  • Mitnik LM, Victorov SV (eds) (1990) Radar sensing of the earth surface from space. Hydrometeoizdat Publishing House, Leningrad, 200pp

    Google Scholar 

  • Mourad PD, Walter BA (1996) Viewing a cold air outbreak using satellite-based synthetic aperture radar and advanced very high resolution radiometer imagery. J Geophys Res 101:16391–16400

    Article  Google Scholar 

  • Nakamura T, Kawasaki Y, Kono T, Awaj T (2010) Large-amplitude internal waves observed in the Kruzenshtern strait of the Kuril Island Chain and possible water transport and mixing. Cont Shelf Res 30:598–607

    Article  Google Scholar 

  • Ohshima KI, Wakatsuchi M, Fukamachi Y, Mizuta G (2002) Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J Geophys Res 107:3195. https://doi.org/10.1029/2001JC001005

    Article  Google Scholar 

  • Rasmussen EA, Turner J (2003) Polar lows. Cambridge University Press, Cambridge, UK, 612pp

    Google Scholar 

  • Sea Hydrometeorology and Hydrochemistry (SHH) (1998) The Okhotsk Sea. Issue 1 Hydrometeorological conditions. In: Glukhovskiy BK, Goptarev IP, Terziev FC (eds) Gidrometeoizdat, Sankt Petersburg, 343pp (in Russian)

    Google Scholar 

  • Shevchenko GV, Rabinovich AB, Thomson RE (2004) Sea-ice drift on the Northeastern shelf of Sakhalin Island. J Phys Oceanogr 34:2470–2491

    Article  Google Scholar 

  • Wakatsuchi M, Ohshima KI (1990) Observations of ice-ocean eddy street off the Hokkaido coast in the Sea of Okhotsk through radar images. J Phys Oceanogr 20(4):585–594

    Article  Google Scholar 

  • Zabolotskikh EV, Mitnik LM, Chapron B (2013) New approach for severe marine weather study using satellite passive microwave sensing. Geophys Res Lett 40(13):3347–3350

    Article  Google Scholar 

  • Zabolotskikh EV, Mitnik LM, Chapron B (2014) GCOM-W1 AMSR2 and MetOp-A. ASCAT wind speeds for the extratropical cyclones over the North Atlantic. Remote Sens Environ 147:89–98. https://doi.org/10.1016/j.rse.2014.02.016

    Article  Google Scholar 

  • Zabolotskikh EV, Mitnik LM, Reul N, Chapron B (2015) New possibilities for geophysical parameter retrievals opened by GCOM-W1 AMSR2. IEEE J Sel Top Appl Earth Obs Remote Sens 8(9):1–14. https://doi.org/10.1109/JSTARS.2015.2416514

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the FEB RAS grant 18-I-010 and the JAXA Project F10. Authors thank the JAXA for the Aqua AMSR-E and GCOM-W1 AMSR2 and ALOS PALSAR data, the ESA for the Envisat and Sentinel-1A SAR images, the NASA for the MODIS and VIIRS data and NOAA for ASCAT wind data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid M. Mitnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitnik, L.M., Dubina, V.A. (2019). The Sea of Okhotsk: Scientific Applications of Remote Sensing. In: Barale, V., Gade, M. (eds) Remote Sensing of the Asian Seas. Springer, Cham. https://doi.org/10.1007/978-3-319-94067-0_8

Download citation

Publish with us

Policies and ethics