Abstract
This chapter presents various intelligent approaches for modelling, generalization and knowledge extraction from data, which are applied in different electric power engineering domains of the real world. Specifically, the chapter presents: (1) the application of ANNs, inductive ML, genetic programming and wavelet NNs, in the problem of ground resistance estimation, an important problem for the design of grounding systems in constructions, (2) the application of ANNs, genetic programming and nature inspired techniques such as gravitational search algorithm in the problem of estimating the value of critical flashover voltage of insulators, a well-known difficult topic of electric power systems, (3) the application of specific intelligent techniques (ANNs, fuzzy logic, etc.) in load forecasting problems and in optimization tasks in transmission lines. The presentation refers to previously conducted research related to the application domains and briefly analyzes each domain of application, the data corresponding to the problem under consideration, while are also included a brief presentation of each intelligent technique and presentation and discussion of the results obtained. Intelligent approaches are proved to be handy tools for the specific applications as they succeed to generalize the operation and behavior of specific parts of electric power systems, they manage to induce new, useful knowledge (mathematical relations, rules and rule based systems, etc.) and thus they effectively assist the proper design and operation of complex real world electric power systems.
Keywords
- Ground Resistance
- Load Forecasting
- Grounding Systems
- Inductive Machine Learning (IML)
- Flashover
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options



















References
Std 80–2013: IEEE guide for safety in AC substation grounding. IEEE Std 80-2013 Cor 1-2015 (2015)
S. 81–2012: Std A.E.E.E.: IEEE guide for measuring earth resistivity, ground impedance, and earth surface potentials of a grounding system. IEEE Std 81-2012 (2012)
Tsekouras, G.J., Kanellos, F.D., Mastorakis, N.: Short term load forecasting in electric power systems with artificial neural networks. In: Mastorakis, N., Bulucea, A., Tsekouras, G. (eds.) Computational Problems in Science and Engineering, vol. 343, pp. 19–58, Cham, Springer International Publishing (2015)
Androvitsaneas, V.P., Gonos, I.F., Stathopulos, I.A.: Experimental study on transient impedance of grounding rods encased in ground enhancing compounds. Electr. Power Syst. Res. 139, 109–115 (2016)
Banton, O., Cimon, M.-A., Seguin, M.-K.: Mapping field-scale physical properties of soil with electrical resistivity. Soil Sci. Soc. Am. J. 61(4), 1010–1017 (1997)
Gonos, I.F., Stathopulos, I.A.: Estimation of multilayer soil parameters using genetic algorithms. IEEE Trans. Power Deliv. 20(1), 100–106 (2005)
Gonos, I.F., Moronis, A.X., Stathopulos, I.A.: Variation of soil resistivity and ground resistance during the year. In: Presented at the Proceedings of the 28th International Conference on Lightning Protection (ICLP 2006), pp. 740–744. Kanazawa, Japan (2006)
Sudha, K., Israil, M., Mittal, S., Rai, J.: Soil characterization using electrical resistivity tomography and geotechnical investigations. J. Appl. Geophys. 67(1), 74–79 (2009)
Tagg, G.F.: Earth resistances. George Newnes Limited, London (1964)
Ahmad, W.F.W., Rahman, M.S.A., Jasni, J., Ab Kadir, M.Z.A., Hizam, H.: Chemical enhancement materials for grounding purposes. In: Proceedings of ICLP, pp. 1233–1241 (2010)
Galván, A.D., Pretelin, G.G., Gaona, E.E.: Practical evaluation of ground enhancing compounds for high soil resistivities. In: Presented at the Proceedings of ICLP, pp. 1233–1241 (2010)
Jasni, J., Siow, L.K., Ab Kadir, M.A., Ahmad, W.W.: Natural Materials as Grounding Filler For Lightning Protection System, pp. 1101–1111 (2010)
Gomes, C., Lalitha, C., Priyadarshanee, C.: Improvement of earthing systems with backfill materials. In: 2010 30th International Conference Lightning Protection (ICLP). Cagliary, Italy (2010)
Androvitsaneas, V.P., Gonos, I.F., Stathopulos, I.A.: Performance of ground enhancing compounds during the year, in 2012 Int. Conf, Lightning Protection (ICLP) (2012)
Boulas, K., Androvitsaneas, V.P., Gonos, I.F., Dounias, G., Stathopulos, I.A.: Ground resistance estimation using genetic programming. In: 5th International Symposium and 27th National Conference Operation Research, pp. 66–71. Aigaleo, Athens (2016)
Blattner, C.J.: Prediction of soil resistivity and ground rod resistance for deep ground electrodes. IEEE Trans. Power Appar. Syst. PAS-99(5): 1758–1763 (1980)
Salam, M.A., Al-Alawi, S.M., Maqrashi, A.A.: An artificial neural networks approach to model and predict the relationship between the grounding resistance and length of buried electrode in the soil. J. Electrost. 64(5), 338–342 (2006)
Gouda, O., Amer, M., El Saied, M.: Optimum design of grounding systems in uniform and non-uniform soils using ANN. Int. J. Soft Comput. 1(3), 175–180 (2006)
Asimakopoulou, F.E., Kourni, E.A., Kontargyri, V.T., Tsekouras, G.J., Stathopulos, I.A.: Artificial neural network methodology for the estimation of ground resistance. In: Presented at the 15th WSEAS International Conference on Systems 2011, pp. 453–458. Corfu Island, Greece (2011)
Asimakopoulou, F.E., Tsekouras, G.J., Gonos, I.F., Stathopulos, I.A.: Estimation of seasonal variation of ground resistance using artificial neural networks. Electr. Power Syst. Res. 94, 113–121 (2013)
Androvitsaneas, V.P., Asimakopoulou, F.E., Gonos, I.F., Stathopulos, I.A.: Estimation of ground enhancing compound performance using artificial neural network. In: Paper Presented at the 2012 International Conference on High Voltage Engineering and Application (ICHVE), pp. 145–149. Shanghai, China (2012)
Androvitsaneas, V.P., Gonos, I.F., Stathopulos, I.A.: Artificial neural network methodology for the estimation of ground enhancing compounds resistance. IET Sci. Meas. Technol. 8(6), 552–570 (2014)
Androvitsaneas, V.P., Tsekouras, G.J., Gonos, I.F., Stathopulos, I.A.: Design of an artificial neural network for ground resistance forecasting. In: Proceedings of 9th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (Med Power 2014), Athens, Greece (2014)
Cao, L., Hong, Y., Fang, H., He, G.: Predicting chaotic time series with wavelet networks. Phys. Nonlinear Phenom. 85(1), 225–238 (1995)
Fang, Y., Chow, T.W.S.: Wavelets based neural network for function approximation. In: Advances in Neural Networks—ISNN 2006, vol. 3971, pp. 80–85 (2006)
Alexandridis, A.K., Zapranis, A.D.: Wavelet neural networks: with applications in financial engineering, chaos, and classification. Wiley, New Jersey (2014)
Androvitsaneas, V.P., Alexandridis, A.K., Gonos, I.F., Dounias, G.D., Stathopulos, I.A.: Wavelet neural network methodology for ground resistance forecasting. Electr. Power Syst. Res. 140, 288–295 (2016)
Zhang, Q.: Using wavelet network in nonparametric estimation. IEEE Trans. Neural Netw. 8(2), 227–236 (1997)
Androvitsaneas, V., Gonos, I., Dounias, G., Stathopulos, I.: Ground resistance estimation using inductive machine learning. In: Presented at the the 19th International Symposium on High Voltage Engineering, Pilsen Czech Republic (2015)
Mitchell, T.M.: Machine Learning, vol. 1, McGraw-Hill (1997)
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
Quinlan, R.J.: C4.5: Programs for Machine Learning. San Mateo, California, USA: Morgan Kaufmann (1993)
Androvitsaneas, V.P.: Contribution to Behavioral Study of Grounding Systems Encased in Ground Enhancing Compounds, PhD Thesis, NTUA, Athens, Greece, (in Greek) (2016)
Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer, Berlin, Heidelberg (2006)
Looms, J.: Insulators for high voltages. IET (1988)
Mackevich, J., Shah, M.: Polymer outdoor insulating materials. Part I: Comparison of porcelain and polymer electrical insulation. IEEE Electr. Insul. Mag. 13(3), 5–12 (1997)
Obenaus, F.: Fremdschichtueberschlag und kriechweglaenge. Dtsch. Elektrotechnik 4, 135–136 (1958)
Topalis, F.V., Gonos, I.F., Stathopulos, I.A.: Dielectric behaviour of polluted porcelain insulators. IEE Proc. Gener. Transm. Distrib. 148(4), 269–274(5) (2001)
International Electrotechnical Commission: Artificial pollution tests on high voltage insulators to be used on AC systems. Int. Stand. IEC 507 (1991)
Ikonomou, K., Katsibokis, G., Panos, G., Stathopoulos: Cool fog tests on artificially polluted insulators. In: Presented at the 5th International Symposium on High Voltage Engineering, Braunschweig, vol. 2, p. paper 52.13 (1987)
Guan, Z., Zhang, R.: Calculation of DC and AC flashover voltage of polluted insulators. IEEE Trans. Electr. Insul. 25(4), 723–729 (1990)
Sundararajan, R., Sadhureddy, N.R., Gorur, R.S.: Computer-aided design of porcelain insulators under polluted conditions. IEEE Trans. Dielectr. Electr. Insul. 2(1), 121–127 (1995)
Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning (1989)
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press (1992)
Kramer, O.: Genetic Algorithm Essentials, vol. 679. Springer (2017)
Gonos, I.F., Topalis, F.V., Stathopolos, I.A.: Genetic algorithm approach to the modelling of polluted insulators. IEE Proc. Gener. Transm. Distrib. 149(3), 373–376(3) (2002)
Rizk, F.A.: Mathematical models for pollution flashover. Electra 78(5), 71–103 (1981)
Ghosh, P., Chatterjee, N.: Polluted insulator flashover model for AC voltage. IEEE Trans. Dielectr. Electr. Insul. 2(1), 128–136 (1995)
Kontargyri, V.T., Gialketsi, A.A., Tsekouras, G.J., Gonos, I.F., Stathopulos, I.A.: Design of an artificial neural network for the estimation of the flashover voltage on insulators. Electr. Power Syst. Res. 77(12), 1532–1540 (2007)
Ghosh, P., Chakravorti, S., Chatterjee, N.: Estimation of time-to-flashover characteristics of contaminated electrolytic surfaces using a neural network. IEEE Trans. Dielectr. Electr. Insul. 2(6), 1064–1074 (1995)
Cline, P., Lannes, W., Richards, G.: Use of pollution monitors with a neural network to predict insulator flashover. Electr. Power Syst. Res. 42(1), 27–33 (1997)
Ugur, M., Auckland, D.W., Varlow, B.R., Emin, Z.: Neural networks to analyze surface tracking on solid insulators. IEEE Trans. Dielectr. Electr. Insul. 4(6), 763–766 (1997)
Dixit, P., Gopal, H.G.: ANN based three stage classification of arc gradient of contaminated porcelain insulators. In: Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, 2004. ICSD 2004, vol. 1, pp. 427–430. Toulouse, France (2004)
Ghosh, S., Kishore, N.: Modeling PD inception voltage of epoxy resin post insulators using an adaptive neural network. IEEE Trans. Dielectr. Electr. Insul. 6(1), 131–134 (1999)
Jahromi, A.N., El-Hag, A.H., Cherney, E.A., Jayaram, S.H., Sanaye-Pasand, M., Mohseni, H.: Prediction of leakage current of composite insulators in salt fog test using neural network. In: CEIDP’05. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 309–312 (2005)
Jahromi, A.N., El-Hag, A.H., Jayaram, S.H., Cherney, E.A., Sanaye-Pasand, M., Mohseni, H.: A neural network based method for leakage current prediction of polymeric insulators. IEEE Trans. Power Deliv. 21(1), 506–507 (2006)
da Silva, A.P.A., Moulin, L.S.: Confidence intervals for neural network based short-term load forecasting. IEEE Trans. Power Syst. 15(4), 1191–1196 (2000)
Asimakopoulou, G., Kontargyri, V., Tsekouras, G., Asimakopoulou, F., Gonos, I., Stathopulos, I.: Artificial neural network optimisation methodology for the estimation of the critical flashover voltage on insulators. IET Sci. Meas. Technol. 3(1), 90–104 (2009)
Karampotsis, E. et al.: Computational intelligence techniques for modelling the critical flashover voltage of insulators: from accuracy to comprehensibility. In: Advances in Artificial Intelligence: From Theory to Practice: 30th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, Arras, France, June 27–30, In: Benferhat, S., Tabia, K., Ali, M. (eds.) Proceedings, Part I, pp. 295–301 Cham, Springer International Publishing (2017)
Popescu, M.-C., Balas, V.E., Perescu-Popescu, L., Mastorakis, N.: Multilayer perceptron and neural networks. WSEAS Trans. Circuits Syst. 8(7), 579–588 (2009)
Ganatra, A., Kosta, Y., Panchal, G., Gajjar, C.: Initial classification through back propagation in a neural network following optimization through GA to evaluate the fitness of an algorithm. Int. J. Comput. Sci. Inf. Technol. 3(1), 98–116 (2011)
Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: LIU, L., ÖZSU, M.T. (eds.) Encyclopedia of database systems, pp. 532–538. Boston, MA, Springer, US (2009)
Androvitsaneas, V.P., Karampotsis, E., Gonos, I.F., Dounias, G., Stathopolos, I.A.: Critical Flashover Voltage on Polluted Insulators Estimated Using Conventional and Intelligent Techniques. In: Presented at the 20th International Symposium on High-Voltage Technology (ISH). Buenos Aires, Argentina (2017)
Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press (1992)
Crane, E.F., McPhee, N.F.: The effects of size and depth limits on tree based genetic programming. In: Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice III, pp. 223–240. Boston, MA, Springer, US (2006)
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)
Yang, H.-T., Huang, C.-M., Huang, C.-L.: Identification of ARMAX model for short term load forecasting: an evolutionary programming approach. IEEE Trans. Power Syst. 11(1), 403–408 (1996)
Haida, T., Muto, S.: Regression based peak load forecasting using a transformation technique. IEEE Trans. Power Syst. 9(4), 1788–1794 (1994)
Hippert, H.S., Pedreira, C.E., Souza, R.C.: Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans. Power Syst. 16(1), 44–55 (2001)
Mastorocostas, P.A., Theocharis, J.B., Bakirtzis, A.G.: Fuzzy modeling for short term load forecasting using the orthogonal least squares method. IEEE Trans. Power Syst. 14(1), 29–36 (1999)
Bakirtzis, A.G., Petridis, V., Kiartzis, S.J., Alexiadis, M.C., Maissis, A.H.: A neural network short term load forecasting model for the Greek power system. IEEE Trans. Power Syst. 11(2), 858–863 (1996)
Kiartzis, S.J., Zoumas, C.E., Theocharis, J.B., Bakirtzis, A.G., Petridis, V.: Short-term load forecasting in an autonomous power system using artificial neural networks. IEEE Trans. Power Syst. 12(4), 1591–1596 (1997)
Elias, C.N., Tsekouras, G., Kavatza, S., Contaxis, G.: A midterm energy forecasting method using fuzzy logic. WSEAS Trans. Syst. 3(5), 2128–2135 (2004)
Tsekouras, G.J., Hatziargyriou, N.D., Dialynas, E.N.: An optimized adaptive neural network for annual midterm energy forecasting. IEEE Trans. Power Syst. 21(1), 385–391 (2006)
Tsekouras, G. et al.: A comparison of artificial neural networks algorithms for short term load forecasting in Greek intercontinental power system. In: Presented at the WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing, Canary Islands, Spain, pp. 15–17 (2008)
Ekonomou, L., Iracleous, D., Gonos, I., Stathopulos, I.: Lightning performance identification of high voltage transmission lines using artificial neural networks. Eng. Intell. Syst. Electr. Eng. Commun. 13(3), 219–223 (2005)
Ekonomou, L., Liatsis, P., Gonos, I.F., Stathopulos, I.A.: Artificial neural network-based software tool for calculating the lightning performance of high-voltage transmission lines. IEE Proc. Sci. Meas. Technol. 153(5), 188–193(5) (2006)
Ekonomou, L., Gonos, I.F., Iracleous, D.P., Stathopulos, I.A.: Application of artificial neural network methods for the lightning performance evaluation of Hellenic high voltage transmission lines. Electr. Power Syst. Res. 77(1):55–63 (2007)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Androvitsaneas, V.P., Boulas, K., Dounias, G.D. (2019). Intelligent Data Analysis in Electric Power Engineering Applications. In: Tsihrintzis, G., Sotiropoulos, D., Jain, L. (eds) Machine Learning Paradigms. Intelligent Systems Reference Library, vol 149 . Springer, Cham. https://doi.org/10.1007/978-3-319-94030-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-94030-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94029-8
Online ISBN: 978-3-319-94030-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)