Skip to main content

Thyristors

  • Chapter
  • First Online:
Fundamentals of Power Semiconductor Devices

Abstract

The basic structure and operation of the thyristor are discussed in this chapter. The thyristor contains two coupled bipolar transistors that provide an internal positive feedback mechanism that allows the device to sustain itself in the on-state. This regenerative action produces low on-state voltage drop, while the device is carrying large on-state currents. However, the internal feedback mechanism makes it difficult to turn-off the structure by external means unless the voltage across the device is reversed. In order to enable operation are elevated temperatures, it is necessary to short-circuit the emitter and base regions of the thyristor. The impact of this on the gate control current and switching behavior is analyzed in the chapter. Analytical models are developed for all the operating modes, including the switching transient for the gate turn-off (GTO) thyristor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mackintosh IM (1958) The electrical characteristics of silicon p-n-p-n triodes. Proc IRE 46:1229

    Article  Google Scholar 

  2. Aldrich RW, Holonyak N (1958) Multiterminal p-n-p-n switches. Proc IRE 46:1236

    Article  Google Scholar 

  3. Herlet A (1965) The maximum blocking capability of silicon Thyristors. Solid State Electron 8:655–671

    Article  Google Scholar 

  4. Raderecht PS (1971) A review of the shorted emitter principle as applied to p-n-p-n silicon controlled rectifiers. Int J Electron 31:541–564

    Article  Google Scholar 

  5. Munoz-Yague A, Leturcq P (1976) Optimum Design of Thyristor Gate-Emitter Geometry. IEEE Transactions on Electron Devices ED-23:917–924

    Article  Google Scholar 

  6. Ghandhi SK (1977) Power semiconductor devices. Wiley, New York, pp 210–214

    Google Scholar 

  7. Longini RL, Melngailis J (1963) Gated turn-on of four layer switch. IEEE Transactions on Electron Devices ED- New York, 10:178–185

    Article  Google Scholar 

  8. Dodson WH, Longini RL (1966) Probed determination of turn-on spread of large area Thyristors. IEEE Transactions on Electron Devices ED-13:478–484

    Article  Google Scholar 

  9. Ruhl HJ (1970) Spreading velocity of the active area boundary in a Thyristor. IEEE Transactions on Electron Devices ED-17:672–680

    Article  Google Scholar 

  10. Yamasaki Y (1975) Experimental observation of the lateral plasma propagation in a Thyristor. IEEE Transactions on Electron Devices ED-22:65–68

    Article  Google Scholar 

  11. Temple VAK, Ferro AP (1976) High-power dual amplifying gate light triggered thyristors. IEEE Transactions on Electron Devices ED-23:893–898

    Article  Google Scholar 

  12. Horigome T et al (1976) A 100 kV Thyristor converter for high voltage DC transmission. IEEE Transactions on Electron Devices ED-17:809–815

    Google Scholar 

  13. Silber D, Winter W, Fullmann M (1984) Progress in light activated power thyristors. IEEE Transactions on Electron Devices ED-23:899–904

    Google Scholar 

  14. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York, pp 754–756

    Google Scholar 

  15. Niedernostheide FJ et al (2000) Light triggered Thyristors with integrated protection functions. IEEE International Symposium on Power Semiconductor Devices and ICs: New York, 267–270

    Google Scholar 

  16. Mazda FF (1993) Power electronics handbook, Chapter 11. Butterworths Publishers, New York, pp 227–245

    Chapter  Google Scholar 

  17. Jaecklin AA (1992) Performance limitations of a GTO with near-perfect technology. IEEE Transactions on Electron Devices ED-39:1507–1513

    Article  Google Scholar 

  18. Gentry FE, Scace RI, Flowers JK (1965) Bidirectional triode P-N-P-N switches. Proc IEEE 53:355–369

    Article  Google Scholar 

  19. Bergman GD (1966) Gate isolation and commutation in bi-directional Thyristors. Int J Electron 21:17–35

    Article  Google Scholar 

  20. Taylor PD (1987) Thyristor design and realization. Wiley, New York, pp 147–151

    Google Scholar 

  21. Baliga BJ et al (1984) The insulated gate transistor. IEEE Transactions on Electron Devices ED-31:821–828

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baliga, B.J. (2019). Thyristors. In: Fundamentals of Power Semiconductor Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-93988-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93988-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93987-2

  • Online ISBN: 978-3-319-93988-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics