Skip to main content

Introduction

  • Chapter
  • First Online:
  • 360 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The research presented over the following 128 pages is a re-invention of the electrically pumped gas laser, dragging it kicking and screaming into the 21st century by replacing the cumbersome laser tube with new, state of the art hollow core optical fibres.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Hecht, Understanding Lasers: An Entry-Level Guide (Wiley, 2008)

    Book  Google Scholar 

  2. S.M. Hooker, C.E. Webb, Laser Physics (Oxford University Press, 2010)

    Google Scholar 

  3. C.S. Willett, Introduction to Gas Lasers: Population Inversion Mechanisms (Pergamon Press, 1974)

    Chapter  Google Scholar 

  4. A. Javan, W.R. Bennett, D.R. Herriott, Population inversion and continuous optical maser oscillation in a gas discharge containing a He–Ne mixture. Phys. Rev. Lett. 6(3), 106 (1961)

    Article  ADS  Google Scholar 

  5. C. Patel, W. Bennett, W. Faust, R. McFarlane, Infrared spectroscopy using stimulated emission techniques. Phys. Rev. Lett. 9(3), 102 (1962)

    Article  ADS  Google Scholar 

  6. R.A. Paananen, D.L. Bobroff, Very high gain gaseous (Xe–He) optical maser at 3.5\(\,\upmu \)m. Appl. Phys. Lett. 2(5), 99 (1963)

    Article  ADS  Google Scholar 

  7. H. Van Bueren, J. Haisma, H. De Lang, A small and stable continuous gas laser. Phys. Lett. 2(7), 340 (1962)

    Article  ADS  Google Scholar 

  8. P.W. Smith, On the optimum geometry of a 6328Å laser oscillator. IEEE J. Quan. Electr. 2(4), 77 (1966)

    Article  ADS  Google Scholar 

  9. P.O. Clark, Investigation of the operating characteristics of the 3.5\(\,\upmu \)m xenon laser. IEEE J. Quant. Electr. 1(3), 109 (1965)

    Google Scholar 

  10. P.W. Smith, A waveguide gas laser. Appl. Phys. Lett. 19, 132 (1971)

    Article  ADS  Google Scholar 

  11. E.A.J. Marcatili, R.A. Schmeltzer, Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 43(4), 1783 (1964)

    Article  Google Scholar 

  12. P.W. Smith, P.J. Maloney, A self-stabilized 3.5\(\,\upmu \)m waveuide He–Xe laser. Appl. Phys. Lett. 22, 667 (1973)

    Google Scholar 

  13. R.F. Cregan, Single-mode photonic band gap guidance of light in air. Science 285(5433), 1537 (1999)

    Article  Google Scholar 

  14. A.M. Jones, A.V.V. Nampoothiri, A. Ratanavis, T. Fiedler, N.V. Wheeler, F. Couny, R. Kadel, F. Benabid, B.R. Washburn, K.L. Corwin, W. Rudolph, Mid-infrared gas filled photonic crystal fiber laser based on population inversion. Opt. Exp. 19(3), 2309 (2011)

    Article  ADS  Google Scholar 

  15. M.R.A. Hassan, F. Yu, W.J. Wadsworth, J.C. Knight, Cavity-based mid-IR fiber gas laser pumped by a diode laser. Optica 3(3), 218 (2016)

    Article  Google Scholar 

  16. F. Vial, K. Gadonna, B. Debord, F. Delahaye, F. Amrani, O. Leroy, F. Gérôme, F. Benabid, Generation of surface-wave microwave microplasmas in hollow-core photonic crystal fiber based on a split-ring resonator. Opt. Lett. 41(10), 2286 (2016)

    Article  ADS  Google Scholar 

  17. X. Shi, X.B. Wang, W. Jin, M.S. Demokan, Investigation of glow discharge of gas in hollow-core fibers. Appl. Phys. B Lasers Opt. 91(2), 377 (2008)

    Article  Google Scholar 

  18. F. Yu, W.J. Wadsworth, J.C. Knight, Low loss silica hollow core fibers for 3–4\(\,\upmu \)m spectral region. Opt. Exp. 20(10), 11153 (2012)

    Google Scholar 

  19. W. Belardi, J.C. Knight, Hollow antiresonant fibers with low bending loss. Opt. Exp. 22(8), 10091 (2014)

    Article  ADS  Google Scholar 

  20. F. Yu, J.C. Knight, Negative curvature hollow-core optical fiber. IEEE J. Sel. Top. Quant. Electr. 22(2) (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Love .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Love, A. (2018). Introduction. In: Hollow Core Optical Fibre Based Gas Discharge Laser Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93970-4_1

Download citation

Publish with us

Policies and ethics