Skip to main content

Thermodynamic Power of the Squeezed Thermal Reservoir

  • Chapter
  • First Online:
Thermodynamics and Synchronization in Open Quantum Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 793 Accesses

Abstract

The last part of this thesis is related to the performance of quantum thermal machines. Quantum thermal machines have been introduced in Chap. 3 as a topic which has attracted increasing attention within the new field of quantum thermodynamics. They generically consist of small quantum devices performing some useful thermodynamic task, such as refrigeration, heat pumping, or work extraction, while powered by out-of-equilibrium thermodynamic or mechanical forces. Their importance comes from the fact that they can be used to investigate fundamental questions related to the laws of thermodynamics as well as being useful in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Most of the results in the chapter have been published in Ref. [25].

References

  1. S. Hormoz, Quantum collapse and the second law of thermodynamics. Phys. Rev. E 87, 022129 (2013)

    Article  ADS  Google Scholar 

  2. J.M. Horowitz, K. Jacobs, Quantum effects improve the energy efficiency of feedback control. Phys. Rev. E 89, 042134 (2014)

    Article  ADS  Google Scholar 

  3. K. Brandner, M. Bauer, M.T. Schmid, U. Seifert, Coherenceenhanced efficiency of feedback-driven quantum engines. New J. Phys. 17, 065006 (2015)

    Article  ADS  Google Scholar 

  4. P. Kammerlander, J. Anders, Coherence and measurement in quantum thermodynamics. Sci. Rep. 6, 22174 (2016)

    Article  ADS  Google Scholar 

  5. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)

    Article  ADS  Google Scholar 

  6. M.O. Scully, Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. Phys. Rev. Lett. 104, 207701 (2010)

    Article  ADS  Google Scholar 

  7. P. Skrzypczyk, A.J. Short, S. Popescu, Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014)

    Article  ADS  Google Scholar 

  8. J. Äberg, Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  9. J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)

    Article  ADS  Google Scholar 

  10. W.H. Zurek, Quantum discord and Maxwell’s demons. Phys. Rev. A 67, 012320 (2003)

    Article  ADS  Google Scholar 

  11. L. del Rio, J. Äberg, R. Renner, O. Dahlsten, V. Vedral, The thermodynamic meaning of negative entropy. Nature 474, 61–63 (2011)

    Article  Google Scholar 

  12. J.J. Park, K.-H. Kim, T. Sagawa, S.W. Kim, Heat engine driven by purely quantum information. Phys. Rev. Lett. 111, 230402 (2013)

    Article  ADS  Google Scholar 

  13. N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, P. Skrzypczyk, Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E 89, 032115 (2014)

    Article  ADS  Google Scholar 

  14. M. Perarnau-Llobet, K.V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Extractable work from correlations. Phys. Rev. X 5, 041011 (2015)

    Google Scholar 

  15. H.T. Quan, P. Zhang, C.P. Sun, Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Phys. Rev. E 73, 036122 (2006)

    Article  ADS  Google Scholar 

  16. H. Li, J. Zou, W.-L. Yu, B.-M. Xu, J.-G. Li, B. Shao, Quantum coherence rather than quantum correlations reflect the effects of a reservoir on a system’s work capability. Phys. Rev. E 89, 052132 (2014)

    Article  ADS  Google Scholar 

  17. A.Ü.C. Hardal, Ö.E. Müstecaplıo\(\hat{\rm g}\)lu, Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)

    Google Scholar 

  18. R. Dillenschneider, E. Lutz, Energetics of quantum correlations. Europhys. Lett. 88, 50003 (2009)

    Article  ADS  Google Scholar 

  19. X.L. Huan, T. Wang, X.X. Yi, Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)

    Article  ADS  Google Scholar 

  20. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  21. L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Quantumenhanced absorption refrigerators. Sci. Rep. 3949 (2014)

    Google Scholar 

  22. R. Long, W. Liu, Performance of quantum Otto refrigerators with squeezing. Phys. Rev. E 91, 062137 (2015)

    Article  ADS  Google Scholar 

  23. O. Abah, E. Lutz, Efficiency of heat engines coupled to nonequilibrium reservoirs. Europhys. Lett. 106, 20001 (2014)

    Article  ADS  Google Scholar 

  24. W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, On the operation of machines powered by quantum nonthermal baths. New J. Phys. 18, 083012 (2016)

    Article  ADS  Google Scholar 

  25. G. Manzano, F. Galve, R. Zambrini, J.M.R. Parrondo, Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016)

    Article  ADS  Google Scholar 

  26. D. Kondepudi, I. Prigogine, Modern Thermodynamics From Heat Engines to Dissipative Structures (Wiley, Chichester, 1998)

    Google Scholar 

  27. H. Spohn, J.L. Lebowitz, Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs, in Advances in Chemical Physics: For Ilya Prigogine, vol. 38, ed. by S.A. Rice (Wiley, Hoboken, 1978)

    Google Scholar 

  28. R. Alicki, The quantum open system as a model of a heat engine. J. Phys. A 12, L103 (1979)

    Article  ADS  Google Scholar 

  29. S. Deffner, E. Lutz, Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404 (2011)

    Article  ADS  Google Scholar 

  30. P.D. Drummond, Z. Ficek, Quantum Squeezing (Springer, Berlin, 2008)

    MATH  Google Scholar 

  31. E.S. Polzik, The squeeze goes on. Nature 453, 45–46 (2008)

    Article  ADS  Google Scholar 

  32. R. Loudon, P.L. Knight, Squeezed light. J. Mod. Opt. 34, 709–759 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  33. H. Fearn, M.J. Collett, Representations of squeezed states with thermal noise. J. Mod. Opt. 35, 553–564 (1988)

    Article  ADS  Google Scholar 

  34. B. Yurke, P.G. Kaminsky, R.E. Miller, E.A. Whittaker, A.D. Smith, A.H. Silver, R.W. Simon, Observation of 4.2- K equilibrium-noise squeezing via a Josephson-parametric amplifier. Phys. Rev. Lett. 60, 764 (1988)

    Article  ADS  Google Scholar 

  35. E.E. Wollman, C.U. Lei, A.J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A.A. Clerk, K.C. Schwab, Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  36. J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, M.A. Sillanpää, Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015)

    Article  ADS  Google Scholar 

  37. O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Single-Ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)

    Article  ADS  Google Scholar 

  38. J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, A single-atom heat engine. Science 352, 325–329 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  39. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  40. H. Spohn, Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227–1230 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  41. M. Esposito, C. Van den Broeck, Three detailed fluctuation theorems. Phys. Rev. Lett. 104, 090601 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  42. J.M. Horowitz, J.M.R. Parrondo, Entropy production along nonequilibrium quantum jump trajectories. New. J. Phys 15, 085028 (2013)

    Article  ADS  Google Scholar 

  43. J.M. Horowitz, T. Sagawa, Equivalent definitions of the quantum nonadiabatic entropy production. J. Stat. Phys. 156, 55–65 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  44. M.O. Scully, Extracting work from a single thermal bath via quantum negentropy. Phys. Rev. Lett. 87, 220601 (2001)

    Article  ADS  Google Scholar 

  45. D. Mandal, H.T. Quan, C. Jarzynski, Maxwell’s refrigerator: an exactly solvable model. Phys. Rev. Lett. 111, 030602 (2013)

    Article  ADS  Google Scholar 

  46. S. Deffner, C. Jarzynski, Information processing and the second law of thermodynamics: an inclusive. Hamiltonian Approach. Phys. Rev. X 3, 041003 (2013)

    Google Scholar 

  47. T.D. Kieu, The second law, Maxwell’s Demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  48. Y. Rezek, R. Kosloff, Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8, 83 (2006)

    Article  ADS  Google Scholar 

  49. H.T. Quan, Y.-X. Liu, C.P. Sun, F. Nori, Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  50. F. Galve, E. Lutz, Nonequilibrium thermodynamic analysis of squeezing. Phys. Rev. A 79, 055804 (2009)

    Article  ADS  Google Scholar 

  51. J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Thermodynamics of information. Nat. Phys. 11, 131–139 (2015)

    Article  Google Scholar 

  52. J. Janszky, P. Adam, Strong squeezing by repeated frequency jumps. Phys. Rev. A 46, 6091–6092 (1992)

    Article  ADS  Google Scholar 

  53. E. Massoni, M. Orszag, Squeezing transfer from vibrations to a cavity field in an ion-trap laser. Opt. Commun. 190, 239–243 (2001)

    Article  ADS  Google Scholar 

  54. A.M. Zagoskin, E. Il’ichev, F. Nori, Heat cost of parametric generation of microwave squeezed states. Phys. Rev. A 85, 063811 (2012)

    Article  ADS  Google Scholar 

  55. T. Sagawa, M. Ueda, Role of mutual information in entropy production under information exchanges. New J. Phys. 15, 125012 (2013)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Manzano Paule .

Appendices

Appendix

A.1 Reservoir Entropy Changes

In the main text we claim that the effective entropy flow, \(\dot{\Phi }\), appearing in the generalized second law inequality, Eq. (10.9) in Sect. 10.1, equals the entropy decrease in the reservoir due to the interaction with the bosonic mode. We demonstrate here this relation from the collisional model introduced in Sect. 2.3.2, where the system bosonic mode interacts sequentially with a ‘fresh’ reservoir mode k in the same squeezed thermal state at inverse temperature \(\beta \), and squeezing parameter \(\xi = r e^{i\theta }\) with \(r\geqslant 0\) and \(\theta \in [0, 2\pi ]\):

$$\begin{aligned} \rho _R^{(k)}&= \hat{\mathcal {S}}_k(\xi ) \frac{e^{-\beta \hat{H}_R(\Omega _k)}}{Z_R} \hat{\mathcal {S}}_k^\dagger (\xi ) \nonumber \\&= \sum _{\nu } \left( \frac{e^{- \beta \hslash \Omega _k \nu }}{Z_R} \right) \hat{\mathcal {S}}_k(\xi ) |\nu _k\rangle \langle \nu _k | \hat{\mathcal {S}}_k^\dagger (\xi ) \end{aligned}$$
(A.1)

where \(\hat{\mathcal {S}}_k(\xi ) \equiv \exp {\frac{r}{2}(b_k^2 e^{- i \theta } - b_k^{\dagger 2} e^{i \theta })}\), stands for the squeezing operator on the reservoir mode k, and in the last equality we decomposed the Gibbs state in its Fock basis \(\{ |\nu _k\rangle \}\). It’s easy to see from the above equation that the eigenvalues and eigenvectors of \(\hat{\rho }_R\) are given by:

$$\begin{aligned} \epsilon _\nu ^{(k)} = \frac{e^{- \beta \hslash \Omega _k \nu }}{Z_R},\quad |\epsilon _\nu ^{(k)}\rangle = \hat{\mathcal {S}}_k(\xi ) |\nu _k\rangle , \end{aligned}$$
(A.2)

i.e. the state \(\rho _R^{(k)}\) can be viewed as a classical mixture of squeezed Fock states \(|\epsilon _v^{(k)}\rangle \) with Boltzmann weights \(\epsilon _\nu ^{(k)}\).

We can estimate the reservoir entropy change during the evolution by constructing, analogously to what have been done for the system bosonic mode, a coarse-grained time derivative by partial tracing Eq. (2.63) over the system degrees of freedom:

$$\begin{aligned} \dot{\rho }_{R}^{(k)} \simeq \frac{1}{\delta t}[\rho _R^{(k)}(t + \delta t) -\rho _R^{(k)}] = \mathcal {R} ~[\rho _R^{(k)}(t + \tau ) - \rho _R^{(k)}] \end{aligned}$$
(A.3)

for the interaction of duration \(\tau \ll g_k^{-1}\) between system and a particular mode k in the reservoir.

Using Eqs. (2.64) and (2.65) we obtain:

$$\begin{aligned} \dot{\rho }_{R}^{(k)}&= - i [\Delta \hat{H}_R(\Omega _k) , \rho _R^{(k)}] + [\epsilon _k^*\langle \hat{a}\rangle _t \hat{b}_k^\dagger - \epsilon _k \langle \hat{a}^\dagger \rangle _t \hat{b}_k , \rho _R^{(k)}] \nonumber \\&+ c_k \langle \hat{a} \hat{a}^\dagger \rangle _{t} \left( \hat{b}_k \rho _R^{(k)} \hat{b}_k^\dagger - \frac{1}{2}\{ \hat{b}_k^\dagger \hat{b}_k, \rho _R^{(k)}\} \right) \nonumber \\&+ c_k \langle \hat{a}^\dagger \hat{a} \rangle _{t} \left( \hat{b}_k^\dagger \rho _R^{(k)} \hat{b}_k - \frac{1}{2}\{ \hat{b}_k \hat{b}_k^\dagger , \rho _R^{(k)}\} \right) \nonumber \\&- c_k e^{-i \Delta _k (2t + \tau )} \langle \hat{a}^2 \rangle _{t} \left( \hat{b}_k^\dagger \rho _R^{(k)} \hat{b}_k^\dagger - \frac{1}{2}\{\hat{b}_k^{\dagger 2} , \rho _R^{(k)} \} \right) \nonumber \\&- c_k e^{i \Delta _k (2t + \tau )} \langle \hat{a}^{\dagger 2} \rangle _{t} \left( \hat{b}_k \rho _R^{(k)} \hat{b}_k - \frac{1}{2}\{\hat{b}_k^2 , \rho _R^{(k)} \} \right) , \end{aligned}$$
(A.4)

where \(\langle \hat{O} \rangle _t = \mathrm {Tr}_{\mathcal {S}}[\hat{O} \rho _t]\) are the system expectation values at time t, and \(\Delta _k = \omega - \Omega _k\). In the above equation we defined

$$\begin{aligned} \epsilon _k&\equiv \mathcal {R}~ \tau ~ g_k ~{\mathrm {sinc}}(\Delta _k \tau /2) ~e^{i\Delta _k (t + \tau /2)}, \nonumber \\ c_k&\equiv \mathcal {R}~ \tau ^2 g_k^2 ~{\mathrm {sinc}}^2(\Delta _k \tau /2), \end{aligned}$$
(A.5)

together with the mode dependent frequency-shift in the reservoir

$$\begin{aligned} \Delta \hat{H}_R(\Omega _k)&\equiv \mathcal {R}~ \frac{g_k^2 \tau }{\Delta _k} \big [ \hat{b}^\dagger \hat{b} \left( {\mathrm {sinc}}(\Delta _k \tau /2)\cos (\Delta _k \tau /2) - 1 \right) + 1 \\&- {\mathrm {sinc}}(\Delta _k \tau /2)\left( 2\langle \hat{a}^\dagger \hat{a} \rangle _t (\cos (\Delta _k \tau /2) - 1) + e^{i\Delta _k \tau /2}\right) \big ], \end{aligned}$$

which is analogous to the system frequency shift, and will be neglected as well. Notice that Eq. (A.4) give us the average evolution of the reservoir modes k when it interacts once at a time with the system at random times (as specified by the rate \(\mathcal {R}\)). However, we don’t know the frequency of the reservoir mode interacting with the system in each collision, so we must assume that the system interacts with all modes in the reservoir with certain probability, given by the density of states in the reservoir \(\vartheta (\Omega _k)\). Therefore the average reservoir entropy change due to the entropy change in all reservoir modes during the evolution should read

$$\begin{aligned} \dot{S}_R = \sum _k \vartheta (\Omega _k) \dot{S}_R^{(k)} = - \sum _k \vartheta (\Omega _k) \mathrm {Tr}_R[\dot{\rho }_R^{(k)} \ln \rho _R^{(k)}]. \end{aligned}$$
(A.6)

In the following we introduce the explicit form of \(\rho _R^{(k)}\) as given in Eq. (A.1) into the above expression for the average reservoir entropy change, and exploit Eq. (A.4). We obtain:

$$\begin{aligned} \dot{S}_R&= \beta \sum _k \vartheta (\Omega _k)~\mathrm {Tr}_R[\dot{\rho }_R^{(k)} ~ \hat{\mathcal {S}}_k(\xi ) \hat{H}_R(\Omega _k) \hat{\mathcal {S}}^\dagger _{k}(\xi )] = \nonumber \\&= - \beta ~\mathrm {Tr}_{\mathcal {S}}[\dot{\rho }_t \hat{\mathcal {S}}(\xi ) \hat{H}_{\mathcal {S}} \hat{\mathcal {S}}^\dagger (\xi )] = - \dot{\Phi } \end{aligned}$$
(A.7)

where the second line follows after a little of operator algebra, by expanding \(\hat{\mathcal {S}}_k(\xi ) \hat{H}_R(\Omega _k) \hat{\mathcal {S}}_{k}^\dagger (\xi )\) and using Eqs. (A.4) and (10.3). As a hint, first notice that the first order term in Eq. (A.4) does not contribute to the entropy. Secondly notice that once the trace over the reservoir degrees of freedom have been performed, one can take the continuum limit over the reservoir spectra by introducing the spectral density, \(J(\Omega )\), to recover the system master equation decay factors in Eq. (2.73) after integrating over frequencies.

Henceforth the entropy flow entering the system during the evolution, as given by \(\dot{\Phi }(t) = - \mathrm {Tr}[\dot{\rho }_t \ln \pi ]\), Eq. (10.9) in Sect. 10.1, is the average entropy lost in the the reservoir in the sequence of collisions. This implies that the non-adiabatic entropy production [41,42,43, 55], \(\Delta _{\mathrm {i}} S_{\mathrm {na}}\) in Eq. (10.8), corresponds indeed the total entropy produced in the process. In terms of the rates:

$$\begin{aligned} \dot{S}_{\mathrm {na}} \equiv - \frac{d}{dt} D(\rho _t || \pi ) = \dot{S} + \dot{S}_R \geqslant 0 \end{aligned}$$
(A.8)

where \(D(\rho ||\sigma ) = \mathrm {Tr}[\rho (\ln \rho - \ln \sigma )]\) is the quantum relative entropy. As a consequence the adiabatic (or house-keeping) contribution due to non-equilibrium external constraints [41, 42] is always zero in the present case. An important consequence of the above finding is that no entropy is produced in order to maintain the non-equilibrium steady state \(\pi \), Eq. (10.7), provided we have access to an arbitrarily big ensemble of reservoir modes in the state \(\rho _R\).

A.2 Equations of Motion

From the Master Equation (10.3) in Sect. 10.1, one can derive the following equations of motion for the expectation values of the Lindblad operators expectation values and its combinations:

$$\begin{aligned}&\frac{d}{dt} \langle \hat{R} \rangle _t = - \frac{\gamma _0}{2} \langle \hat{R} \rangle _t \end{aligned}$$
(A.9)
$$\begin{aligned}&\frac{d}{dt} \langle \hat{R}^2 \rangle _t = - \gamma _0 \langle \hat{R}^2 \rangle _t, \end{aligned}$$
(A.10)
$$\begin{aligned}&\frac{d}{dt} \langle \hat{R}^\dagger \hat{R} \rangle _t = - \gamma _0 \left( \langle \hat{R}^\dagger \hat{R} \rangle _t - n_{\mathrm {th}}(\omega ) \right) . \end{aligned}$$
(A.11)

They can then be employed to explicitly asses the dynamics of the different contributions appearing in the effective entropy flow, \(\dot{\Phi }\) in Eq. (10.9). Indeed by rewriting

$$\begin{aligned} \hat{a}&= \hat{R} \cosh (r)~ - \hat{R}^\dagger \sinh (r)e^{i \theta }, \end{aligned}$$
(A.12)
$$\begin{aligned} \hat{a}^\dagger&= \hat{R}^\dagger \cosh (r) - \hat{R} \sinh (r) e^{-i \theta }, \end{aligned}$$
(A.13)

and substituting into the expressions \(\dot{Q}(t) = \dot{U}_{\mathcal {S}}(t) = \mathrm {Tr}[\hat{H}_{\mathcal {S}} \dot{\rho }_t]\) for the heat flux entering from the reservoir, and \(\dot{\mathcal {A}}(t) = \hslash \omega \mathrm {Tr}[\hat{A}_\theta \dot{\rho }_t]\) with \(\hat{A}_\theta = -\frac{1}{2} (\hat{a}^{\dagger 2} e^{i \theta } + \hat{a}^{2} e^{-i \theta })\), for the extra non-thermal contribution, we obtain the following equations

$$\begin{aligned} \dot{Q}(t)= & {} - \gamma _0 \left( Q(t) + \langle \hat{H}_{\mathcal {S}} \rangle _{\rho _0} - \langle \hat{H}_{\mathcal {S}} \rangle _{\pi } \right) , \nonumber \\ \dot{\mathcal {A}}(t)= & {} - \gamma _0 \left( \mathcal {A}(t) - \hslash \omega \langle \hat{A}_\theta \rangle _{\pi } \right) . \end{aligned}$$
(A.14)

In the above equations we introduced the steady state expectation values \(\langle \hat{H}_{\mathcal {S}} \rangle _{\pi } = \hslash \omega N_\omega \) and \(\langle \hat{A}_\theta \rangle _{\pi } = |M_\omega |\), being \(\pi \) given in Eq. (10.7), with the reservoir expectation values, \(N_\omega = \langle \hat{b}_k^\dagger \hat{b}_k \rangle _{\rho _R}\) and \(M_\omega = \langle \hat{b}_k^2 \rangle _{\rho _R}\) as defined in (2.74) for a mode with resonant frequency \(\Omega _k = \omega \) in the state \(\rho _R\). We notice that both flows behave monotonically, yielding to an exponential decay as discussed in Sect. 10.1.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manzano Paule, G. (2018). Thermodynamic Power of the Squeezed Thermal Reservoir. In: Thermodynamics and Synchronization in Open Quantum Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-93964-3_10

Download citation

Publish with us

Policies and ethics