Skip to main content

Advertisement

SpringerLink
Go to cart
Book cover

Entity-Oriented Search pp 1–23Cite as

  1. Home
  2. Entity-Oriented Search
  3. Chapter
Introduction

Introduction

  • Krisztian Balog4 
  • Chapter
  • Open Access
  • First Online: 03 October 2018
  • 19k Accesses

Part of the The Information Retrieval Series book series (INRE,volume 39)

Abstract

Entity-oriented search is the search paradigm of organizing and accessing information centered around entities, and their attributes and relationships. This introductory chapter defines what an entity is, identifies prominent contexts for entity-oriented search, presents a number of specific tasks, puts the subject into a historical perspective, and lays the foundations for the rest of the book.

Download chapter PDF

References

  1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases: The Logical Level. 1st edn. Addison-Wesley Publishing Co. (1995)

    Google Scholar 

  2. Agarwal, G., Kabra, G., Chang, K.C.C.: Towards rich query interpretation: walking back and forth for mining query templates. In: Proceedings of the 19th international conference on World wide web, WWW ’10, pp. 1–10. ACM (2010). doi: 10.1145/1772690.1772692

  3. Balog, K.: Semistructured data search. In: Ferro, N. (ed.) Bridging Between Information Retrieval and Databases, Lecture Notes in Computer Science, vol. 8173, pp. 74–96. Springer (2014). doi: 10.1007/978-3-642-54798-0_4

    Google Scholar 

  4. Bast, H., Buchhold, B., Haussmann, E.: Semantic search on text and knowledge bases. Found. Trends Inf. Retr. 10(2-3), 119–271 (2016). doi: 10.1561/1500000032

    CrossRef  Google Scholar 

  5. Benetka, J.R., Balog, K., Nørvåg, K.: Anticipating information needs based on check-in activity. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining, WSDM ’17, pp. 41–50. ACM (2017). doi: 10.1145/3018661.3018679

  6. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–43 (2001)

    CrossRef  Google Scholar 

  7. Beynon-Davies, P.: Database Systems. 3rd edn. Palgrave, Basingstoke, UK (2004)

    CrossRef  Google Scholar 

  8. Blanco, R., Mika, P., Vigna, S.: Effective and efficient entity search in RDF data. In: Proceedings of the 10th International Conference on The Semantic Web, ISWC ’11, pp. 83–97. Springer (2011). doi: 10.1007/978-3-642-25073-6_6

    CrossRef  Google Scholar 

  9. Booch, G.: Object Oriented Design with Applications. Benjamin-Cummings Publishing Co., Inc. (1991)

    MATH  Google Scholar 

  10. Chakrabarti, S., Kasturi, S., Balakrishnan, B., Ramakrishnan, G., Saraf, R.: Compressed data structures for annotated web search. In: Proceedings of the 21st International Conference on World Wide Web, WWW ’12, pp. 121–130. ACM (2012). doi: 10.1145/2187836.2187854

  11. Chen, P.P.S.: The entity-relationship model–toward a unified view of data. ACM Trans. Database Syst. 1(1), 9–36 (1976). doi: 10.1145/320434.320440

    CrossRef  Google Scholar 

  12. Cheng, T., Chang, K.C.C.: Beyond pages: Supporting efficient, scalable entity search with dual-inversion index. In: Proceedings of the 13th International Conference on Extending Database Technology, EDBT ’10, pp. 15–26. ACM (2010). doi: 10.1145/1739041.1739047

  13. Cheng, T., Yan, X., Chang, K.C.C.: EntityRank: Searching entities directly and holistically. In: Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB ’07, pp. 387–398 (2007)

    Google Scholar 

  14. Christen, P.: A survey of indexing techniques for scalable record linkage and deduplication. IEEE Trans. on Knowl. and Data Eng. 24(9), 1537–1555 (2012). doi: https://doi.org/10.1109/TKDE.2011.127

    CrossRef  Google Scholar 

  15. Cohen, W.W., Hurst, M., Jensen, L.S.: A flexible learning system for wrapping tables and lists in HTML documents. In: Proceedings of the 11th International Conference on World Wide Web, WWW ’02, pp. 232–241. ACM (2002). doi: 10.1145/511446.511477

  16. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE Trans. on Knowl. and Data Eng. 19(1), 1–16 (2007). doi: https://doi.org/10.1109/TKDE.2007.9

  17. Fetahu, B., Gadiraju, U., Dietze, S.: Improving entity retrieval on structured data. In: In Proceedings of the 14th International Semantic Web Conference. Springer (2015). doi: 10.1007/978-3-319-25007-6_28

    CrossRef  Google Scholar 

  18. Ganti, V., He, Y., Xin, D.: Keyword++: A framework to improve keyword search over entity databases. Proc. VLDB Endow. 3(1-2), 711–722 (2010). doi: 10.14778/1920841.1920932

    CrossRef  Google Scholar 

  19. Guha, R., McCool, R., Miller, E.: Semantic search. In: Proceedings of the 12th International Conference on World Wide Web, WWW ’03, pp. 700–709. ACM (2003). doi: 10.1145/775152.775250

  20. Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. In: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’09, pp. 267–274. ACM (2009)

    Google Scholar 

  21. John, T.: What is semantic search and how it works with Google search (2012)

    Google Scholar 

  22. Johnson, M.: How the statistical revolution changes (computational) linguistics. In: Proceedings of the EACL 2009 Workshop on the Interaction Between Linguistics and Computational Linguistics: Virtuous, Vicious or Vacuous?, ILCL ’09, pp. 3–11. Association for Computational Linguistics (2009)

    Google Scholar 

  23. Lin, T., Pantel, P., Gamon, M., Kannan, A., Fuxman, A.: Active objects. In: Proceedings of the 21st international conference on World Wide Web, WWW ’12, pp. 589–598. ACM (2012). doi: 10.1145/2187836.2187916

  24. Liu, T.Y.: Learning to Rank for Information Retrieval. Springer (2011)

    Google Scholar 

  25. Liu, Y., Bai, K., Mitra, P., Giles, C.L.: TableSeer: Automatic table metadata extraction and searching in digital libraries. In: Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’07, pp. 91–100. ACM (2007). doi: 10.1145/1255175.1255193

  26. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)

    Google Scholar 

  27. Pérez-Agüera, J.R., Arroyo, J., Greenberg, J., Iglesias, J.P., Fresno, V.: Using BM25F for semantic search. In: Proceedings of the 3rd International Semantic Search Workshop, SEMSEARCH ’10. ACM (2010). doi: y10.1145/1863879.1863881

  28. Pichai, S.: Google I/O 2016 keynote (2016)

    Google Scholar 

  29. Pinto, D., McCallum, A., Wei, X., Croft, W.B.: Table extraction using conditional random fields. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’03, pp. 235–242. ACM (2003). doi: 10.1145/860435.860479

  30. Piskorski, J., Yangarber, R.: Information extraction: Past, present and future. In: Multi-source, Multilingual Information Extraction and Summarization, pp. 23–49. Springer (2013). doi: 10.1007/978-3-642-28569-1_2

    Google Scholar 

  31. Pound, J., Hudek, A.K., Ilyas, I.F., Weddell, G.: Interpreting keyword queries over web knowledge bases. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, pp. 305–314. ACM (2012). doi: 10.1145/2396761.2396803

  32. Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: Proceedings of the 19th international conference on World wide web, WWW ’10, pp. 771–780. ACM (2010). doi: 10.1145/1772690.1772769

  33. Qian, L., Cafarella, M.J., Jagadish, H.V.: Sample-driven schema mapping. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, SIGMOD ’12, pp. 73–84. ACM (2012). doi: 10.1145/2213836.2213846

  34. Rosen, G.: Abstract objects. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Spring 2017 Edition) (2017)

    Google Scholar 

  35. Salton, G.: Automatic Information Organization and Retrieval. McGraw Hill Text (1968)

    Google Scholar 

  36. Sanderson, M.: Test collection based evaluation of information retrieval systems. Found. Trends Inf. Retr. 4(4), 247–375 (2010). doi: 10.1561/1500000009

    CrossRef  Google Scholar 

  37. Sarawagi, S.: Information extraction. Found. Trends databases 1(3), 261–377 (2008). doi: 10.1561/1900000003

    CrossRef  Google Scholar 

  38. Sarkas, N., Paparizos, S., Tsaparas, P.: Structured annotations of web queries. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10, pp. 771–782. ACM (2010). doi: 10.1145/1807167.1807251

  39. Sawant, U., Chakrabarti, S.: Learning joint query interpretation and response ranking. In: Proceedings of the 22nd International Conference on World Wide Web, WWW ’13, pp. 1099–1109. ACM (2013). doi: 10.1145/2488388.2488484

  40. Weikum, G.: DB & IR: both sides now. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD ’07, pp. 25–30. ACM (2007). doi: 10.1145/1247480.1247484

  41. Yu, J.X., Qin, L., Chang, L.: Keyword search in relational databases: A survey. IEEE Data Eng. Bull. 33(1), 67–78 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Stavanger, Stavanger, Norway

    Krisztian Balog

Authors
  1. Krisztian Balog
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2018 The Editor(s) (if applicable) and the Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balog, K. (2018). Introduction. In: Entity-Oriented Search. The Information Retrieval Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-93935-3_1

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-93935-3_1

  • Published: 03 October 2018

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93933-9

  • Online ISBN: 978-3-319-93935-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.