Skip to main content

Mining Hybrid Business Process Models: A Quest for Better Precision

  • Conference paper
  • First Online:
Business Information Systems (BIS 2018)

Abstract

In this paper, we present a technique for the discovery of hybrid process models that combine imperative and declarative constructs. In particular, we first employ the popular Inductive Miner to generate a fully imperative model from a log. Like most imperative miners, the Inductive Miner tends to return so-called flower models for the less structured parts of the process. These parts are often imprecise. To counter these imprecise parts, we replace them with declarative models to increase the precision since declarative models are good at specifying which behavior is disallowed. The approach has been implemented in ProM and tested on several synthetic and real-life event logs. Our experiments show that hybrid models can be found to be more precise without overfitting the data.

This work is supported in part by the Hybrid Business Process Management Technologies project funded by the Danish Council for Independent Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://data.4tu.nl/repository/.

References

  1. van der Aalst, W.M.P., Adams, M., ter Hofstede, A.H.M., Pesic, M., Schonenberg, H.: Flexibility as a service. In: Chen, L., Liu, C., Liu, Q., Deng, K. (eds.) DASFAA 2009. LNCS, vol. 5667, pp. 319–333. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04205-8_27

    Chapter  Google Scholar 

  2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rew. Data Min. Knowl. Disc. 2(2), 182–192 (2012)

    Article  Google Scholar 

  4. van der Aalst, W.M.P., Rubin, V.A., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

    Article  Google Scholar 

  5. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  6. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: the SCIFF framework. ACM Trans. Comput. Log. 9(4), 29:1–29:43 (2008)

    Article  MathSciNet  Google Scholar 

  7. Back, C.O., Debois, S., Slaats, T.: Towards an entropy-based analysis of log variability. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 53–70. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0_4

    Chapter  Google Scholar 

  8. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. T. Petri Nets Other Models Concurrency 2, 278–295 (2009)

    Google Scholar 

  9. De Giacomo, G., Dumas, M., Maggi, F.M., Montali, M.: Declarative process modeling in BPMN. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 84–100. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_6

    Chapter  Google Scholar 

  10. Debois, S., Hildebrandt, T., Slaats, T.: Hierarchical declarative modelling with refinement and sub-processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 18–33. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_2

    Chapter  Google Scholar 

  11. Debois, S., Hildebrandt, T.T., Marquard, M., Slaats, T.: Hybrid process technologies in the financial sector. In: BPM (Industry track), pp. 107–119 (2015)

    Google Scholar 

  12. Debois, S., Hildebrandt, T.T., Slaats, T., Marquard, M.: A case for declarative process modelling: Agile development of a grant application system. In: EDOC Workshops, vol. 14, pp. 126–133 (2014)

    Google Scholar 

  13. Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery of declarative workflows. In: CIDM, pp. 135–142. IEEE (2013)

    Google Scholar 

  14. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_25

    Chapter  Google Scholar 

  15. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78469-2_16

    Chapter  MATH  Google Scholar 

  16. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17

    Chapter  Google Scholar 

  17. Maggi, F.M.: Declarative process mining with the declare component of ProM. In: BPM (Demos). CEUR Workshop Proceedings, vol. 1021. CEUR-WS.org (2013)

    Google Scholar 

  18. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9_18

    Chapter  Google Scholar 

  19. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: CIDM, pp. 192–199. IEEE (2011)

    Google Scholar 

  20. Maggi, F.M., Slaats, T., Reijers, H.A.: The automated discovery of hybrid processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 392–399. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_27

    Chapter  Google Scholar 

  21. Marquard, M., Shahzad, M., Slaats, T.: Web-based modelling and collaborative simulation of declarative processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 209–225. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_15

    Chapter  Google Scholar 

  22. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process mining: an experimental evaluation. Data Min. Knowl. Disc. 14(2), 245–304 (2007)

    Article  MathSciNet  Google Scholar 

  23. Montali, M.: Specification and Verification of Declarative Open Interaction Models. LNBIP, vol. 56. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14538-4

    Book  MATH  Google Scholar 

  24. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-structured processes. In: EDOC, pp. 287–300 (2007)

    Google Scholar 

  25. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: an empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_37

    Chapter  Google Scholar 

  26. Reijers, H.A., Slaats, T., Stahl, C.: Declarative modeling–an academic dream or the future for BPM? In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 307–322. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3_26

    Chapter  Google Scholar 

  27. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specification. In: S.Kunii, H., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 513–526. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45581-7_38

    Chapter  Google Scholar 

  28. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient and customisable declarative process mining with SQL. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 290–305. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_18

    Chapter  Google Scholar 

  29. Schunselaar, D.M.M.: Configurable Process Trees: Elicitation, Analysis, and Enactment. Ph.D. thesis, Eindhoven University of Technology (2016)

    Google Scholar 

  30. Slaats, T., Schunselaar, D.M.M., Maggi, F.M., Reijers, H.A.: The semantics of hybrid process models. In: OTM CoopIS. pp. 531–551 (2016)

    Chapter  Google Scholar 

  31. Smedt, J.D., Weerdt, J.D., Vanthienen, J., Poels, G.: Mixed-paradigm process modeling with intertwined state spaces. Bus. IS Eng. 58(1), 19–29 (2016)

    Article  Google Scholar 

  32. Smedt, J.D., Weerdt, J.D., Vanthienen, J.: Fusion miner: process discovery for mixed-paradigm models. Decis. Support Syst. 77, 123–136 (2015)

    Article  Google Scholar 

  33. Tax, N., Lu, X., Sidorova, N., Fahland, D., van der Aalst, W.M.P.: The imprecisions of precision measures in process mining (2017). https://arxiv.org/abs/1705.03303

  34. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from event-based data using Little Thumb. Integr. Comput.-Aided Eng. 10(2), 151–162 (2003)

    Google Scholar 

  35. Westergaard, M., Slaats, T.: CPN Tools 4: A process modeling tool combining declarative and imperative paradigms. In: BPM (Demos) (2013)

    Google Scholar 

  36. Westergaard, M., Slaats, T.: Mixing paradigms for more comprehensible models. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 283–290. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis M. M. Schunselaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schunselaar, D.M.M., Slaats, T., Maggi, F.M., Reijers, H.A., van der Aalst, W.M.P. (2018). Mining Hybrid Business Process Models: A Quest for Better Precision. In: Abramowicz, W., Paschke, A. (eds) Business Information Systems. BIS 2018. Lecture Notes in Business Information Processing, vol 320. Springer, Cham. https://doi.org/10.1007/978-3-319-93931-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93931-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93930-8

  • Online ISBN: 978-3-319-93931-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics