Balancing Domain Decomposition by Constraints Algorithms for Curl-Conforming Spaces of Arbitrary Order

  • Stefano ZampiniEmail author
  • Panayot VassilevskiEmail author
  • Veselin DobrevEmail author
  • Tzanio KolevEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 125)


We construct Balancing Domain Decomposition by Constraints methods for the linear systems arising from arbitrary order, finite element discretizations of the H(curl) model problem in three-dimensions. Numerical results confirm that the proposed algorithm is quasi-optimal in the coarse-to-fine mesh ratio, and poly-logarithmic in the polynomial order of the curl-conforming discretization space. Additional numerical experiments, including higher-order geometries, upscaled finite elements, and adaptive coarse spaces, prove the robustness of our algorithm. A scalable three-level extension is presented, and it is validated with large scale experiments using up to 16,384 subdomains and almost a billion of degrees of freedom.



This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and was supported by the U.S. DOE ASCR program. The research was performed during a visit of the first author to the LLNL, Center for Applied Scientific Computing. The authors are grateful to Umberto Villa for fruitful discussions. For computer time, this research used also the resources of the Supercomputing Laboratory at King Abdullah University of Science & Technology (KAUST) in Thuwal, Saudi Arabia.


  1. 1.
    S. Balay et al., PETSc Users Manual, ANL-95/11 - Revision 3.7. Argonne National Lab (2016)Google Scholar
  2. 2.
    P.B. Bochev, C.J. Garasi, J.J. Hu, A.C. Robinson, Tuminaro, R. S.: An improved algebraic multigrid method for solving Maxwell’s equations. SIAM J. Sci. Comput. 25, 623–642 (2003)Google Scholar
  3. 3.
    D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications (Springer, Heidelberg, 2013)CrossRefGoogle Scholar
  4. 4.
    J. Calvo, A two-level overlapping Schwarz algorithm for H(curl) in two dimensions with irregular subdomains. Electron. Trans. Numer. Anal. 44, 497–521 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    J. Calvo, A BDDC algorithm with deluxe scaling for H(curl) in two dimensions with irregular subdomains. Math. Comput. 85, 1085–1111 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    C.R. Dohrmann, A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput. 25, 246–258 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    C.R. Dohrmann, O.B. Widlund, An iterative substructuring algorithm for two-dimensional problems in H(curl). SIAM J. Numer. Anal. 50, 1004–1028 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    C.R. Dohrmann, O.B. Widlund, Some recent tools and a BDDC algorithm for 3D problems in H(curl), in Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol. 91 (Springer, Berlin, 2013), pp. 15–25Google Scholar
  9. 9.
    C.R. Dohrmann, O.B. Widlund, A BDDC Algorithm with deluxe scaling for three-dimensional H(curl) problems. Commun. Pure Appl. Math. 69, 745–770 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, D. Rixen, FETI-DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method. Int. J. Numer. Methods Eng. 50, 1523–1544 (2001)zbMATHGoogle Scholar
  11. 11.
    A.V. Grayver, T.V. Kolev, Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method. Geophysics 80, E277–E291 (2015)CrossRefGoogle Scholar
  12. 12.
    R. Hiptmair, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36, 204–225 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Hiptmair, J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45, 2483–2509 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Hiptmair, G. Widmer, J. Zou, Auxiliary space preconditioning in H 0(curl;  Ω). Numer. Math. 103, 435–459 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Q. Hu, J. Zou, A nonoverlapping domain decomposition method for Maxwell’s equations in three dimensions. SIAM J. Numer. Anal. 41, 1682–1708 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J.J. Hu, R.S. Tuminaro, P.B. Bochev, C.J. Garasi, A.C. Robinson, Toward an h-independent algebraic multigrid method for Maxwell’s equations. SIAM J. Sci. Comput. 27, 1669–1688 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Q. Hu, S. Shu, J. Zou, A substructuring preconditioner for three-dimensional Maxwell’s equations, Domain decomposition methods in science and engineering XX. Lect. Notes Comput. Sci. Eng. 91, 73–84 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    G. Karypis, METIS and ParMETIS. Encycl. Parallel Comput. 1117–1124 (2011)Google Scholar
  19. 19.
    A. Klawonn, O.B. Widlund, Dual-primal FETI methods for linear elasticity. Commun. Pure Appl. Math. 59, 1523–1572 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    T.V. Kolev, P.S. Vassilevski, Parallel auxiliary space AMG for H(curl) problems. J. Comput. Math. 27, 604–623 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    I.V. Lashuk, P.S. Vassilevski, The construction of the coarse de Rham complexes with improved approximation properties. Comput. Methods Appl. Math. 14, 257–303 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Y. Ma, K. Hu, X. Hu, J. Xu, Robust preconditioners for incompressible MHD models. J. Comput. Phys. 316, 721–746 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Mandel, C.R. Dohrmann, R. Tezaur, An algebraic theory for primal and dual substructuring methods by constraints. Appl. Numer. Math. 54, 167–193 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    MFEM, Modular finite element methods.
  25. 25.
    J.-C. Nédélec, Mixed finite elements in R 3. Numer. Math. 35, 315–341 (1980)MathSciNetCrossRefGoogle Scholar
  26. 26.
    D.-S. Oh, O.B. Widlund, S. Zampini, C. Dohrmann, BDDC Algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomes Vector Fields. Math. Comput. (2017). Published electronicallyGoogle Scholar
  27. 27.
    ParElag, Parallel element agglomeration algebraic multigrid upscaling and solvers.
  28. 28.
    F. Rapetti, A. Toselli, A FETI preconditioner for two-dimensional edge element approximations of Maxwell’s equations on nonmatching grids. SIAM J. Sci. Comput. 23, 92–108 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    S. Reitzinger, J. Schöberl, An algebraic multigrid method for finite element discretizations with edge elements. Numer. Linear Algebra Appl. 9, 223–238 (2002)MathSciNetCrossRefGoogle Scholar
  30. 30.
    R.N. Rieben, D.A. White, Verification of high-order mixed finite-element solution of transient magnetic diffusion problems. IEEE Trans. Magn. 42, 25–39 (2006)CrossRefGoogle Scholar
  31. 31.
    C. Schwarzbach, R.-U. Börner, K. Spitzer, Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics: a marine CSEM example. Geophys. J. Int. 187, 63–74 (2011)CrossRefGoogle Scholar
  32. 32.
    A. Toselli, Neumann-Neumann methods for vector field problems. Electron. Trans. Numer. Anal. 11, 1–24 (2000)MathSciNetzbMATHGoogle Scholar
  33. 33.
    A. Toselli, Overlapping Schwarz methods for Maxwell’s equations in three dimensions. Numer. Math. 86, 733–752 (2000)MathSciNetCrossRefGoogle Scholar
  34. 34.
    A. Toselli, Dual-primal FETI algorithms for edge finite-element approximations in 3D. IMA J. Numer. Anal. 26, 96–130 (2006)MathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Toselli, X. Vasseur, Robust and efficient FETI domain decomposition algorithms for edge element approximations. Int. J. Comput. Math. Electr. Electron. Eng. 24, 396–407 (2005)MathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Toselli, O.B. Widlund, Domain Decomposition Methods—Algorithms and Theory (Springer, Berlin, 2005)CrossRefGoogle Scholar
  37. 37.
    X. Tu, Three-level BDDC in three dimensions. SIAM J. Sci. Comput. 29, 1759–1780 (2007)MathSciNetCrossRefGoogle Scholar
  38. 38.
    P.S. Vassilevski, U. Villa, A mixed formulation for the Brinkman problem. SIAM J. Numer. Anal. 52, 258–281 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    S. Zampini, PCBDDC: a class of robust dual-primal methods in PETSc. SIAM J. Sci. Comput. 38, S282–S306 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    S. Zampini, Adaptive BDDC deluxe methods for H(curl), in Domain Decomposition Methods in Science and Engineering XXIII. Lecture Notes in Computational Science and Engineering, vol. 116 (Springer, Berlin, 2017), pp. 285–292Google Scholar
  41. 41.
    S. Zampini, D.E. Keyes, On the robustness and prospects of adaptive BDDC methods for finite element discretizations of elliptic PDEs with high-contrast coefficients, in Proceedings of the Platform for Advanced Scientific Computing Conference (2016), pp. 6:1–6:13Google Scholar
  42. 42.
    S. Zampini, X. Tu, Multilevel BDDC deluxe algorithms with adaptive coarse spaces for flow in porous media. SIAM J. Sci. Comput. 39, A1389–A1415 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.King Abdullah University of Science and TechnologyComputer, Electrical and Mathematical Sciences and Engineering Division, Extreme Computing Research CenterThuwalKingdom of Saudi Arabia
  2. 2.Center for Applied Scientific ComputingLawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations