Skip to main content

A Finite Difference Method with Optimized Dispersion Correction for the Helmholtz Equation

  • 558 Accesses

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 125)

Abstract

We propose a new finite difference method (FDM) with optimized dispersion correction for the Helmholtz equation.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-93873-8_18
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-93873-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    We could also use different norms leading to different optimized dispersion corrections.

References

  1. I.M. Babuska, S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392–2423 (1997)

    MathSciNet  CrossRef  Google Scholar 

  2. I. Babuška, F. Ihlenburg, E.T. Paik, S.A. Sauter, A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput. Methods Appl. Mech. Eng. 128(3–4), 325–359 (1995)

    MathSciNet  CrossRef  Google Scholar 

  3. Z. Chen, D. Cheng, T. Wu, A dispersion minimizing finite difference scheme and preconditioned solver for the 3d Helmholtz equation. J. Comput. Phys. 231(24), 8152–8175 (2012)

    MathSciNet  CrossRef  Google Scholar 

  4. D. Cheng, X. Tan, T. Zeng, A dispersion minimizing finite difference scheme for the Helmholtz equation based on point-weighting. Comput. Math. Appl. 314, 618–646 (2017)

    MathSciNet  MATH  Google Scholar 

  5. O.G. Ernst, M.J. Gander, Multigrid methods for Helmholtz problems: a convergent scheme in 1D using standard components, in Direct and Inverse Problems in Wave Propagation and Applications, ed. by I. Graham, U. Langer, M. Melenk, M. Sini (DeGruyter, 2013), pp. 135–186.

    Google Scholar 

  6. F. Ihlenburg, I. Babuška, Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. Int. J. Numer. Methods Eng. 38(22), 3745–3774 (1995)

    MathSciNet  CrossRef  Google Scholar 

  7. F. Ihlenburg, I. Babuška, Finite element solution of the Helmholtz equation with high wave number part i: the h-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)

    MathSciNet  CrossRef  Google Scholar 

  8. C.-H. Jo, C. Shin, J.H. Suh, An optimal 9-point, finite-difference, frequency-space, 2-d scalar wave extrapolator. Geophysics 61(2), 529–537 (1996)

    CrossRef  Google Scholar 

  9. C. Shin, H. Sohn, A frequency-space 2-d scalar wave extrapolator using extended 25-point finite-difference operator. Geophysics 63(1), 289–296 (1998)

    CrossRef  Google Scholar 

  10. C.C. Stolk, A dispersion minimizing scheme for the 3-d Helmholtz equation based on ray theory. J. Comput. Phys. 314, 618–646 (2016)

    MathSciNet  CrossRef  Google Scholar 

  11. C.C. Stolk, M. Ahmed, S.K. Bhowmik, A multigrid method for the Helmholtz equation with optimized coarse grid corrections. SIAM J. Sci. Comput. 36(6), A2819–A2841 (2014)

    MathSciNet  CrossRef  Google Scholar 

  12. E. Turkel, D. Gordon, R. Gordon, S. Tsynkov, Compact 2d and 3d sixth order schemes for the Helmholtz equation with variable wave number. J. Comput. Phys. 232(1), 272–287 (2013)

    MathSciNet  CrossRef  Google Scholar 

  13. T. Wu, A dispersion minimizing compact finite difference scheme for the 2d Helmholtz equation. J. Comput. Appl. Math. 311, 497–512 (2017)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre-Henri Cocquet , Martin J. Gander or Xueshuang Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Cocquet, PH., Gander, M.J., Xiang, X. (2018). A Finite Difference Method with Optimized Dispersion Correction for the Helmholtz Equation. In: , et al. Domain Decomposition Methods in Science and Engineering XXIV . DD 2017. Lecture Notes in Computational Science and Engineering, vol 125. Springer, Cham. https://doi.org/10.1007/978-3-319-93873-8_18

Download citation