Advertisement

Dimension Reduction as Modeling Method for Elastomers Under Complex Dynamic Loading

  • Ahad Kh JanahmadovEmail author
  • Maksim Javadov
Chapter
Part of the Materials Forming, Machining and Tribology book series (MFMT)

Abstract

Static and sliding friction are phenomenas whose understanding is necessary for the design of safe and energy-saving products. Knowledge of the exact laws of friction is of interest for numerous applications, for example, compression, braking, fatigue, using bushings and bearings, internal combustion engines, hinges, gaskets, foundries, machine building, welding, electrical contacts, and many others (Persson in Sliding Friction: Physical Principles and Applications. Springer, p 462, 1999 [1], Pashayev and Janahmadov in Fractal Approach to Fracture Mechanics, p 440, 2015 [2]). The phenomenon of friction interested people hundreds and even thousands of years ago and remains to date one of the main problems in the production of new products and the improvement of technology.

Literature

  1. 1.
    Persson B.N.J. Sliding Friction: Physical Principles and Applications – Springer, 1999 – 462 p.Google Scholar
  2. 2.
    Pashayev A.M., Janahmadov A.Kh. Fractal Approach to Fracture Mechanics. Baku: “APOSTROFF”, 2015 – 440 p.Google Scholar
  3. 3.
    Amontons G. De la resistance cause’e dans les machines (About resistance and force in machines) // Mem l’Acedemic R.A. – 1699 –P.257–282.Google Scholar
  4. 4.
    Coulomb C.A. Theoric des machines simple (Theory of Simple Machines) – Paris: Bachelier, 1821 – 368 p.Google Scholar
  5. 5.
    Popov V.L. Contact Mechanics and Friction: Physical Principles and Applications. – Berlin: Springer – Verlag, 2010 – 362 p.Google Scholar
  6. 6.
    Bowden F.P., Tabor D. The Friction and Lubrication of Solids. – Oxford: Clarendon Press, 1986. -374 p.Google Scholar
  7. 7.
    He G., Müser M.H., Robbins M.O. Adsorbed layers and the origin of static friction // Science – 1999. – V.284.- P.1650–1652.Google Scholar
  8. 8.
    Barber J.R. Multiscale surfaces and Amontons’ law of friction // Tribol. Left – 2013. – V. 49. P.539–543.Google Scholar
  9. 9.
    Otsuki M., Matsukawa H. Systematic breakdown of Amontons’ law of friction for an elastic object locally obeying Amontons’ law // Sci. Rep.- 2013. – V.3. –P.1586.Google Scholar
  10. 10.
    Rubinstein S.M., Cohen G., Fineberg J. Detachment fronts and onset of dynamic friction // Nature. -2004.-V.430.-P.1005–1009.Google Scholar
  11. 11.
    Li Q., Popov M., Dimaki A., Filippov A.E., Kürschner S., Popov V.L. Friction between a viscoelastic body and a rigid surface with random self – affine roughness // Phys. Rev. Lett. – 2013. – V.111.-P.034301.Google Scholar
  12. 12.
    De Wit C.C., Olsson H., Astrom K., Lischinsky P. A new model for control of systems with friction // IEEE Trans. Autom. Control. -1995. –V.40. –P. 419–425.Google Scholar
  13. 13.
    Peng J.Y., Chen D.B. Modeling of piezoelectric – driven stick – slip actuators // IEEE/ASME Trans. Mechatron – 2010-V.99. –P.1–4.Google Scholar
  14. 14.
    Dupont P., Armstrong D., Hayward V. Elasto-Plastic Friction Model: Contact Compliance and Stiction // Proc. Am. Control Conf. 2. – Chicago, 2000. –P.1072–1077.Google Scholar
  15. 15.
    Milahin N., Starcevic S. Influence of the normal force and contact geometry on the static force of friction of an oscillating sample// Phys. Mesomech. – 2014. –V.17. - №3. P.228–231.Google Scholar
  16. 16.
    Nguyen H.X., Teidelt E., Popov V.L., Fatikov S. Modeling and waveform optimization of stick - slip micro – drives using the method of dimensionality reduction // Arch. Appl. Mech.- doi 10.1007/s 00419-014-0934-y.Google Scholar
  17. 17.
    Dieterich J.H. Time dependent friction and the mechanics of stick-slip // Pure Appl. Geophys. – 1978 – V. 116. –P. 790–806.Google Scholar
  18. 18.
    Dieterich J.H. Modeling of rock friction: 1. Experiment results and constitutive equations // J.Geophys. Res. Solid Earth. – 1979. V.84. – P.2161–2168.Google Scholar
  19. 19.
    Rice J.R., Ruina A.L. Stability of steady frictional slipping // J. Appl. Mech. – 1983. V.50. –P.343–349.Google Scholar
  20. 20.
    Grosch K.A. The relation between the friction and visco - elastic properties of rubber // Proc. R. Soc. Lond. A-1963. –V.274.-P.21–39.Google Scholar
  21. 21.
    Le Gal A., Yang X., Klüppel M. Evaluation of sliding friction and contact mechanics of elastomers based on dynamic – mechanical analysis // J. Chem. Phys. -2005. –V.123.- P.014704.Google Scholar
  22. 22.
    Popov V.L., Voll L., Li Q., Chai Y.S., Popov M. Generalized law of friction between elastomer and differently shaped rough bodies // Sci. Rep. -2014.-V4-P.3750-  https://doi.org/10.1038/srep 03750.
  23. 23.
    Popov V.L., Dimaki A., Psakhie S., Popov M. On the role of scales in contact mechanics and friction between elastomers and randomly rough self –affine surfaces // Sci. Rep. -2015. –V.5. – P.1139.Google Scholar
  24. 24.
    Lee E.H. Stress analysis in viscoelastic bodies //Quart Appl. Math. – 1955. V.13. –P.183–190.Google Scholar
  25. 25.
    Radok J.R.M. Visco-elastic stress analysis // Quart Appl. Math. – 1957.- V.15. –P.198–202.Google Scholar
  26. 26.
    Kürschner S., Popov V.L. Penetration of self-affine fractal rough rigid bodies into a model elastomer having a linear viscous rheology // Phys. Rev. E. -2013. V.87.-P.042802.Google Scholar
  27. 27.
    Norburg A.L., Samuel T. The recovery and sinking-in or piling-up of material in the Brinell test // J. Iron Steel Inst. – 1928 – V. 117.- P.673.Google Scholar
  28. 28.
    Popov V.L., Heβ M. Method of Dimensionality Reduction in Contact Mechanics and Friction. – Berlin: Springer, 2014. – 265 p.Google Scholar
  29. 29.
    Argatov I.I., Sabina F.J. Spherical indentation of a transversely isotropic elastic half-space reinforced with a thin layer // Int. J. Eng. Sci – 2012. –V.50.-P.132–143.Google Scholar
  30. 30.
    Gao H.J., Chiu C.H., Lee J. Elastic contact versus indentation modeling of multi-layered materials// Int. J. Solid Struct. – 1992. –V.29.-P.2471–2492.Google Scholar
  31. 31.
    Popov V.L. Method of dimensionality reduction in contact mechanics and tribology. Heterogeneous media // Phys. Mesomech. -2014. – V. 17. №1-P.50–57.Google Scholar
  32. 32.
    Teidelt E. Oscillating Contacts: Friction Induced Motion and Control of Friction: Dissertation – Berlin: Berlin University of Technology, 2015. – 131 p.-https:opus4. kobv.de/opus4-tuberlin/files/6108/ teidelt_elena.pdf.Google Scholar
  33. 33.
    Starcevic J., Filippov A.E. Simulation of the influence of ultrasonic in-plane oscillations on dry friction accounting for stick and creep//Phys. Mesomech. – 2012.- V.15.-№5-6.-P.330–332.Google Scholar
  34. 34.
    Milanin N., Starcevic J. Influence of the normal force and contact geometry on the static force of friction of an oscillating sample//Phys. Mesomech. – 2014. –V.17.-№3.-P.228–231.Google Scholar
  35. 35.
    Milamin N., Li Q., Starčević J. Influence of the normal force on the sliding friction under ultrasonic oscillations// Facta Univ. Ser. Mech. Eng. – 2015.-V.13(11). –P.27–32.Google Scholar
  36. 36.
    Popov V.L. Kontaktmechanik and Reibung. Von der Nanotribologie bis zur Erdbebendynamik. – Berlin: Springer, 2015. – 398 p.Google Scholar
  37. 37.
    Paggi M., Pohrt R., Popov V.L. Partial – slip frictional response of rough surfaces // Sci. Rep. – 2014. – V.4.-P.5178 –  https://doi.org/10.1038/srep05178.
  38. 38.
    Grzemba B., Pohrt R., Teidelt E., Popov V.L. Maximum micro-slip in tangential contact of randomly rough self-affine surfaces // Wear. -2014.-V.309(1).-P.256–258.Google Scholar
  39. 39.
    Archard J.F. Elastik deformation and the law of friction // Proc. R. Soc. A. – 1957. – V.243 – P.190–205.Google Scholar
  40. 40.
    Persson B.N.J., Albohr O., Tartaglino U., Volokin A.I., Tosatti E. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion // J.Phys. : Condens. Matter. R. -2005.- V.17. – P.1–62.Google Scholar
  41. 41.
    Sivebaek I.M., Samoiliv V.N., Persson B.N.J. Effective viscosity of confined hydrocarbons // Phys. Rev. Lett. – 20012. – V.108 P.036102.Google Scholar
  42. 42.
    Hyun S., Pei L., Molinari J.-F., Robbins M.O. Finite-element analysis of contact between elastic self-affine surfaces // Phys. Rev. E. – 2004. – V.70. –P.02117.Google Scholar
  43. 43.
    Pohrt R., Popov V.L. Normal contact stiffness of elastic solids with fractal rough surfaces // Phys. Rev. Lett. – 2012. – V.108 P.104301.Google Scholar
  44. 44.
    Pohrt R. Normal stiffness of multiscale rough surfaces in elastic contact: Thesis.- Berlin: Berlin University of Technology, 2013.Google Scholar
  45. 45.
    Greenwood J.A., Williamson J.B.P. Contact of nominally flat surfaces // Proc. R. Soc. A.- 1966. V.295. – P.300.Google Scholar
  46. 46.
    Popov V.L. What does friction really depend on? Robust governing parameters in contact mechanics and friction // Физ. мeзoмex. 18 4 (2015) 5–11.Google Scholar
  47. 47.
    Dimaki A.V., Popov V.L. Coefficient of friction between a rigid conical indenter and a model elastomer: Influence of local frictional heating // Phys. Mesomech. – 2015. – V.18- №1.- P.75–80.Google Scholar
  48. 48.
    Li Q., Dimaki A., Popov M., Psakhie S.G., Popov V.L. Kinetics of the coefficient of friction of elastomers // Sci. Rep. -2014. – V.4. – P.5795.Google Scholar
  49. 49.
    Psakhie S.G., Popov V.L. Mesoscopic nature of friction and numerical simulation methods in tribology // Физ. мeзoмex. 15 4 (2012) 5–7.Google Scholar
  50. 50.
    Persson B.N.J. Contact mechanics for randomly rough surfaces // Surf. Sci. Rep. – 2006. – V.61. –P.201–227.Google Scholar
  51. 51.
    Prandtl L. Ein Gedankenmodel zur kinetischen Theorie der festen Körper // ZAMM. 1928- V.8-P.85–106.Google Scholar
  52. 52.
    Janahmadov A.Kh., Javadov M.Y. Synergetic and Fractals in Tribology.- Berlin: Springer – Verlag, 2016 – 382 p.Google Scholar
  53. 53.
    Panin V.E. Overview on mesomechanics of plastic deformation and fracture of solids // Teor. Appl. Fract. Mech.- 1998 – V.30. – P.1–11.Google Scholar
  54. 54.
    Popov V.L., Psakhie S.G. Numerical simulation methods in tribology // Tribology Int. – 2007. – V40. P.916–923.Google Scholar
  55. 55.
    Geike T., Popov V.L. Mapping of three – dimensional contact problem into one dimension //Phys. Rev. E.- 2007.- V76. – P.036710.Google Scholar
  56. 56.
    Kürschner S., Filippov A.E. Normal contact between a rigid surface and a viscous body: Verification of the method of reduction of dimensionality for viscous media // Физ. мeзoмex. 15 4 (2012) 25–30.Google Scholar
  57. 57.
    Pohrt R., Popov V.L. Investigation of the dry normal contact between fractal rough surfaces using the reduction method, comparison to 3D simulations // Физ. мeзoмex. 15 4 (2012) 31–35.Google Scholar
  58. 58.
    Li Q. Dependence of the kinetic force of friction between a randomly rough surface and simple elastomer on the normal force // Физ. мeзoмex. 15 4 (2012) 63–65.Google Scholar
  59. 59.
    Heβ M. Über die exakte Abbildung ausgewählter dreidimensionaler Kontakte auf Systems mit niedrigerer räumlicher Dimension. – Göttingen: Cuvillier – Verlag, 2011.- 172 p.Google Scholar
  60. 60.
    Psakhie S.G., Smolin A.Y., Stefanov Y.P. et al. Modeling the behavior of complex media by jointly using discrete and continuum approaches // Tech. Phys. Lett.-2004. –V.30. –P.712–714.Google Scholar
  61. 61.
    Filippov A.E., Popov V.L. Fractal Tomlinson model for mesoscopic friction: From microscopic velocity – dependent damping to macroscopic Coulomb friction // Phys. Rev. E.-2007.-V.75. – P.027103.Google Scholar
  62. 62.
    Popov V.L. Basic ideas and applications of the method of reduction of dimensionality in contact mechanics //// Физ. мeзoмex. 15 4 (2012) 9–18.Google Scholar
  63. 63.
    Sneddon I.N The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile // Int. J. Eng. Sci. – 1965. – V.3. –P.47–57.Google Scholar
  64. 64.
    Johnson K.L. Contact Mechanics.- Cambridge: Cambridge University Press, 1987. – 468 p.Google Scholar
  65. 65.
    Johnson K.L., Kendall K., Roberts A.D. Surface energy and the contact of elastic solid // Proc. Roy. Soc. Lond. A. Math. – 1971.-V. 324.- P.301–313.Google Scholar
  66. 66.
    Heβ M. On the reduction method of dimensionality: The exact mapping of axisymmetric contact problems with and without adhesion //// Физ. мeзoмex. -2012 T.15.-№4.- C.19–24.Google Scholar
  67. 67.
    Landau L.D., Lifschitz E.M. Lehrbuch der Theoretischen Physik. Band 7. Elastizitätstheorie. – Berlin: Akademic – Verlag. 1965 –183 p.Google Scholar
  68. 68.
    Landau L.D., Lifschitz E.M. Lehrbuch der Theoretischen Physik. Band 6. Hydrodynamic. – Berlin: Akademic – Verlag. 1991 –683 p.Google Scholar
  69. 69.
    Barbe J.R. Bounds on the electrical resistance between contacting elastic rough bodies // Proc. Roy. Soc. Lond. A. – 2003. V. 495. – P.53–66.Google Scholar
  70. 70.
    Savkoor A.R. On the friction of rubber // Wear, 1965, v. 8.Google Scholar
  71. 71.
    Kummer H.W. United theory of rubber and tire friction // Eng. Res. Bulletin B-9, USA, 1966.Google Scholar
  72. 72.
    Janahmadov A.Kh. Mechanics of elastomers in oil and gas equipment. Baku: Çaşıoglu. 2002. – 308 p.Google Scholar
  73. 73.
    Myp Д. Tpeниe и cмaзкa элacтoмepoв. M.:Xимия, 1977.Google Scholar
  74. 74.
    Griffith A.A. The phenomena of rapture and flow in solid // Philos. T. Roy. Soc. A. – 1921. – v.221. – P.163–198.Google Scholar
  75. 75.
    Prandtl L. Ein Gedankenmodell für den Zerreiβ vorgang spröder Körper // J.Appl. Math. Mech. – 1933. –V.13. – P.129–133.Google Scholar
  76. 76.
    Maugis D. Contact, Adhesion and Rupture of Elastic Solids – Berlin: Springer-Verlag, 2000. -414p.Google Scholar
  77. 77.
    Hyun S., Robbins M.O. Elastic contact between rough surfaces: Effect of roughness at large and small wavelengths // Tribol. Int. – 2007. –V.40. – P.1413–1422.Google Scholar
  78. 78.
    Campana C., Müser M.H. Practical Green’s function approach to the simulation of elastic, semi-infinite solids//Phys. Rev.B. 2006. –V.74. – P.075420.Google Scholar
  79. 79.
    Akarapu S., Sharp T., Robbins M.O, Stiffness of contacts between rough surfaces // Phys. Rev.Lett. 2011. –V.106. – P.204301.Google Scholar
  80. 80.
    Campana C., Persson B.N.J., Müser M.H. Transverse and normal interfacial stiffness of solids with randomly rough surfaces// J. Phys. Condens. Matt.- 2011. –V.23. – P.085001.Google Scholar
  81. 81.
    Popov V.L., Filippov A.E. Force of friction between fractal rough surface and elastomer // Tech. Phys. Lett.- 2010.- V.36.-P.525–527.Google Scholar
  82. 82.
    Popov V.L., Dimaki A.V. Using hierarchial memory to calculate friction force between fractal rough solid surface and elastomer with arbitrary linear rheological properties // Tech. Phys. Lett. -2011.-V.37.-P8–11.Google Scholar
  83. 83.
    Popov V.L. A theory of the transition from static to kinetic friction in boundary lubrication layers // Solid State Commun. -2000.-V.115.-P.369–373.Google Scholar
  84. 84.
    Meyer E., Overney R.M., Dransfeld K., Gyalog T. Nanoscience: Friction and Rheology of Nanometer Scale-Singapore: World Scientific, 1998–392p.Google Scholar
  85. 85.
    Hertz H. Über die Berührung fester elastischer Körper // J.für die reine und angewandte Mathematik – 1882. –V.92-. P.156–171.Google Scholar
  86. 86.
    Boussinesq J. Application des Potentiels a L’equilibre et du Mouvement des Solides Elastiques- Paris: Gauthier-Villars, 1885.Google Scholar
  87. 87.
    Sneddon I.N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile // Int. J.Eng. Sci. -1965. –V.3.-P.47–57.Google Scholar
  88. 88.
    Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus leg instrumented indentation: Advances in understanding and refinements to methodology // J.Mater. Res.-2004. – V. 19. №1. –P.3–20.Google Scholar
  89. 89.
    Maugis D., Barquins M. Fracture mechanics and the adherence of viscoelastic bodies // J.Phys. D. – 1978-V.11- P.1989–2023.Google Scholar
  90. 90.
    Barquins M., Maugis D. Adhesive contact of axisymmetric punches on an elastic half – space. The modified Hertz – Huber’s stress tensor for contacting spheres // J. Mec. Theor. Appl. – 1982. -V.1. P.331–357.Google Scholar
  91. 91.
    Mauqis D., Barquins M. Adhesive contact of sectionally smooth-ended punches on elastic half-spaces: Theory and experiment // J. Phys. D. – 1983. –V. 16.- P.1843–1874.Google Scholar
  92. 92.
    Yao H., Gao H. Optimal shapes for adhesive binding between two elastic bodies // J. Colloid Interf. Sci.-2006.-V.298 №2. P.564–572.Google Scholar
  93. 93.
    Popova E., Popov V.L. The research works of Coulomb and Amontons and generalized laws of friction // Friction. -2015. –V.3(2). –P.183–190.Google Scholar
  94. 94.
    Steuermann E. To Hertz’s theory of local deformations in compressed elastic bodies // Dokl. AS URSS. -1939. –V.25. –P.359–361.Google Scholar
  95. 95.
    Segedin C.M. The relation between load and penetration for a spherical punch // Mathematika. – 1957.- V.4. –P.156–161.Google Scholar
  96. 96.
    Pharr G.M., Oliver W.C., Brotzen F.R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation // Mater. Res.-1992.-V.7.№3 – P.613–617.Google Scholar
  97. 97.
    Gibson R.E. Some results concerning displacements and stresses in a non-homogeneous elastic half –space // Geotechnique . – 1967. –V.17. №1.- P.58–67.Google Scholar
  98. 98.
    Irwin G.R. Fracture // Handbook of Physics. – Berlin: Springer – Verlag, 1958 – V.6. – P.551–590.Google Scholar
  99. 99.
    Geike T., Popov V.L. Reduction of three – dimensional contact problem to one-dimensional ones // Tribology Int. – 2007.-V40.-P.924–929.Google Scholar
  100. 100.
    Popov V.L., Filippov A.E. Applicability of a reduced model to description of real contacts between rough surfaces with different Hurst exponents // Tech. Phys. Lett. – 2008 –V.34. –P.722–724.Google Scholar
  101. 101.
    Popov V. L., Filippov A.E. Statistics of contacts and the dependence of their total length on the normal force for fractal surfaces with different Hurst exponents // Tech. Phys. Lett.- 2008 –V.34. – P.792–794.Google Scholar
  102. 102.
    Димaки A.B., Пoпoв B.Л. Meтoд peдyкции paзмepнocти иeгo пpимeнeниe для мoдeлиpoвaния тpeния элacтoмepoв в ycлoвияx cлoжныx динaмичecкиx нaгpyзoк // Физ. мeзoмex. 15 4 (2012) 81–86.Google Scholar
  103. 103.
    Ruina A.L. Slip instability and state variable friction laws // J. Geophys. Res. – 1983.- V.88-P.10359–10370.Google Scholar
  104. 104.
    Heslot F., Baumberger T., Perrin B. et al. Creep, stick-slip and dry friction dynamics: Experiment and heuristic model // Phys. Rev. E. – 1994. –V.49. –P.4973–4988.Google Scholar
  105. 105.
    Popov V.L., Grzemba B., Starcevic J., Popov M. Rate and state dependent friction laws and the prediction of earthquakes: What can we learn from laboratory models ? // Tectonophysics. -2012. –V. 532–535. –P.291-300.Google Scholar
  106. 106.
    Eaves A., Smith A., Waterhouse W., Sansome D. Review of the application of ultrasonic vibrations to deforming metals // Ultrasonics . – 1975. –V. 13. - №4. –P.162–170.Google Scholar
  107. 107.
    Siegert K., Ulmer J. Superimposing ultrasonic waves on the dies in tube and wire drawing // J. Eng. Mat. Tech. – 2001. – V.125.- №4. –P.517–523.Google Scholar
  108. 108.
    Блexмaн И.И.. Джaнeлидзe Г.Ю. Bибpaциoннoe пepeмeщeниe –M.: Hayкa, 1964. -410 c.Google Scholar
  109. 109.
    Hess D., Soom A., Kim C. Normal vibrations and friction at a Hertzian contact under random excitation: Theory and experiments // J. Sound Vibration – 1992. V. 153. №3.- P.491–508.Google Scholar
  110. 110.
    Tolstoy M. Significance of the normal degree of freedom and natural normal vibrations in contact friction // Wear. – 1967. –V. 10. №3. –P.199–213.Google Scholar
  111. 111.
    Popov V.L., Starcevic J., Filippov A.E. Influence of ultrasonic in – plane oscillations on static and sliding friction and intrinsic length scale of dry friction // Trib. Lett. -2010. –V.39. – p. 25–30.Google Scholar
  112. 112.
    Пoпoв B.Л., Cтapкeвич Я., Taйдeльт E. Bлияниe yльтpaзвyкoвыx кoлeбaний в плocкocти cкoльжeния и пepпeндикyляpнo к нeй нa cилy тpeния пoкoя и cкoльжeния // Tpeниe и cмaзкa в мaшинax и мexaнизмax -2011. №2. c.3–9.Google Scholar
  113. 113.
    Teidelt E., Popov V.L., Starcevic J. Influence of in – plane and out-of-plane ultrasonic oscillations on sliding friction // SAE Int. J. Passeng. Cars-Mech. Syst.-2011.-V.4(3). –P.1387–1393.Google Scholar
  114. 114.
    Ben-David O., Fineberg J. Static friction coefficient is not a material constant //Phys. Rev. Lett. -2011. –V.106.- P.254301.Google Scholar
  115. 115.
    Pohrt R., Popov V.L.// Private communication -2012.Google Scholar
  116. 116.
    Popov V.L., Filippov A.E. Adhesive properties of contacts between elastic bodies with randomly rough self-affine surfaces: A simulation with the method of reduction of dimensionality // Физ. мeзoмex. 15 4 (2012) 87–92.Google Scholar
  117. 117.
    Schargott M., Popov V.L., Gorle. Spring model of biological attachment pads // J.Theor. Biology. -2006- V.243. –P.48–53.Google Scholar
  118. 118.
    Yao H., Gao H. Mechanics of robust and releasable adhesion in biology: Bottom-up designed hierarchical structures of gecko // J. Mech. Phys. Solids.-2006.-V.54.-P.1120–1146.Google Scholar
  119. 119.
    Heise R., Popov V.L. Adhesive contribution to the coefficient of friction between rough surfaces //Tribol. Lett .-2010.-V.39.-P.245–250.Google Scholar
  120. 120.
    Geike T., Popov V.L. Reduction of three-dimensional contact problems to one-dimensional ones // Tribol. Int .-2007.-V.40.-P.924–929.Google Scholar
  121. 121.
    Fuller K.N.G., Tabor D. The effect of surface roughness on the adhesion of elastic solids // Proc. R. Soc. Lond. A- 1975.-V.345.-P.327–342.Google Scholar
  122. 122.
    Persson B.N.J. Elastoplastic contact between randomly rough surfaces // Phys. Rev. Lett .-2001.-V.87.-№11ю-P.116101.Google Scholar
  123. 123.
    Leidner M. Kontakt physikalische Simulation von Schichtsystemen: PhD Thesis. – Technische Universität Darmstadt, 2009.Google Scholar
  124. 124.
    Venner C.H, Lubrecht A.A. Multilevel Methods in Lubricatio. – Amsterdam: Elsevier, 2000.-379 p.Google Scholar
  125. 125.
    Geike T. Theoretische Grundlagen eines schnellen Berechnungsver - fahrens für den Kontakt rauer Oberflächen. –Berlin: TU Berlin, 2007.Google Scholar

Copyright information

© Springer International Publishing AG 2019

Authors and Affiliations

  1. 1.National Aviation AcademyBakuAzerbaijan
  2. 2.BakuAzerbaijan

Personalised recommendations