Abstract
When teaching at scale in the physical classroom or online classroom of a MOOC, the scarce resource of personal instructor communication becomes a differentiating factor between the quality of learning experience available in smaller classrooms. In this paper, through real-time predictive modeling of engagement analytics, we augment a MOOC platform with personalized communication affordances, allowing the instructional staff to direct communication to learners based on individual predictions of three engagement analytics. The three model analytics are the current probability of earning a certificate, of submitting enough materials to pass the class, and of leaving the class and not returning. We engineer an interactive analytics interface in edX which is populated with real-time predictive analytics from a backend API service. The instructor can target messages to, for example, all learners who are predicted to complete all materials but not pass the class. Our approach utilizes the state-of-the-art in recurrent neural network classification, evaluated on a MOOC dataset of 20 courses and deployed in one. We provide evaluation of these courses, comparing a manual feature engineering approach to an automatic feature learning approach using neural networks. Our provided code for the front-end and back-end allows any instructional team to add this personalized communication dashboard to their edX course granted they have access to the historical clickstream data from a previous offering of the course, their course’s daily provided log data, and an external machine to run the model service API.
Keywords
- Representation learning
- MOOCs
- Learning analytics
- Engagement
- Drop-out prediction
- Instructor communication
- edX
- User-interface
This is a preview of subscription content, access via your institution.
Buying options





Notes
- 1.
These data were provided by way of the edX partners’ Research Data Exchange (RDX). All data have been anonymized before being received and are restricted in use by MOU.
- 2.
A student gained certification if the “status” column in the edX provided certificates_generatedcertificate-prod-analytics.sql file was set to “downloadable”.
- 3.
All implemented using Python’s scikit-learn machine learning library.
- 4.
The longest event streams were in EPFLx “Plasma Physics and Applications”.
- 5.
- 6.
References
Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Ho, A., Reich, J., Nesterko, S., Seaton, D., Mullaney, T., Waldo, J., Chuang, I.: HarvardX and MITx: The first year of open online courses, fall 2012-summer 2013 (2014)
Reich, J.: MOOC completion and retention in the context of student intent. EDUCAUSE Review Online (2014)
Mass, A., Heather, C., Do, C., Brandman, R., Koller, D., Ng, A.: Offering verified credentials in massive open online courses. In: Ubiquity Symposium (2014)
Mi, F., Yeung, D.: Temporal models for predicting student drop-out in massive open online courses. In: 2015 IEEE International Conference Data Mining Workshop (ICDMW) (2015)
Kloft, M., Stiehler, F., Zheng, Z., Pinkwart, N.: Predicting MOOC drop-out over weeks using machine learning methods. In: Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs (2014)
Jiang, S., Williams, A., Schenke, K., Warschauer, M., O’dowd, D.: Predicting MOOC performance with week 1 behavior. In: Educational Data Mining 2014 (2014)
Balakrishnan, G., Coetzee, D.: Predicting student retention in massive open online courses using hidden markov models (2013)
Boyer, S., Veeramachaneni, K.: Robust predictive models on moocs: transferring knowledge across courses. In: Proceedings of the 9th International Conference on Educational Data Mining (2016)
Crossley, S., Paquette, L., Dascalu, M., McNamara, D., Baker, R.: Combining click-stream data with NLP tools to better understand MOOC completion. In: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge (2016)
Kizilcec, R., Halawa, S.: Attrition and achievement gaps in online learning. In: Proceedings of the Second ACM Conference on Learning@ Scale (2015)
Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., Sohl-Dickstein, J.: Deep knowledge tracing. In: Advances in Neural Information Processing Systems, pp. 505–513 (2015)
Tang, S., Peterson, J., Pardos, Z.: Modelling student behavior using granular large scale action data from a MOOC. arXiv:1608.04789 (2016)
Whitehill, J., Williams, J., Lopez, C.C., Reich, J.: Beyond prediction: toward automatic intervention to reduce mooc student stopout. In: Educational Data Mining (2015)
Boyer, S., Gelman, B., Schreck, B., Veeramachaneni, K.: Data science foundry for MOOCs. In: IEEE International Conference on Data Science and Advanced Analytics (DSAA), 36678 2015 (2015)
Pardos, Z.A., Gowda, S., Baker, R., Heffernan, N.: The sum is greater than the parts: ensembling models of student knowledge in educational software. ACM SIGKDD Explor. Newlett. 12(2), 37–44 (2012)
Wise, A., Cui, Y., Vytasek, J.: Bringing order to chaos in MOOC discussion forums with content-related thread identification. In: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge (2016)
Jayaprakash, S.M., Moody, E.W., Lauría, E.J., Regan, J.R., Baron, J.D.: Early alert of academically at-risk students: an open source analytics initiative. J. Learn. Analytics 1(1), 6–47 (2014)
Tang, S., Peterson, J., Pardos, Z.: Predictive modelling of student behaviour using granular large-scale action data. In: Lang, C., Siemens, G., Wise, A.F., Gaevic, D. (eds.) The Handbook of Learning Analytics, 1st edn., pp. 223–233. Society for Learning Analytics Research (SoLAR), Alberta (2017)
Pardos, Z.A., Tang, S., Davis, D., Le. C.V.: Enabling real-time adaptivity in MOOCs with a personalized next-step recommendation framework. In: Proceedings of the Fourth ACM Conference on Learning @ Scale (L@S). Cambridge, MA. pp. 23–32. ACM (2017)
Ferschke, O., Yang, D., Tomar, G., Rosé, C.P.: Positive impact of collaborative chat participation in an edX MOOC. In: Conati, C., Heffernan, N., Mitrovic, A., Verdejo, M.Felisa (eds.) AIED 2015. LNCS (LNAI), vol. 9112, pp. 115–124. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19773-9_12
Andres, J.M.L., Baker, R.S., Siemens, G., Spann, C.A., Gasevic, D., Crossley, S.: Studying MOOC completion at scale using the MOOC replication framework. In: Proceedings of the 10th International Conference on Educational Data Mining, pp. 338–339 (2017)
Acknowledgements
These multi-institution analyses were made possible by anonymized data from the edX partners’ Research Data Exchange (RDX) program. This work was supported in part by a grant from the National Science Foundation (Award #1446641).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Le, C.V., Pardos, Z.A., Meyer, S.D., Thorp, R. (2018). Communication at Scale in a MOOC Using Predictive Engagement Analytics. In: , et al. Artificial Intelligence in Education. AIED 2018. Lecture Notes in Computer Science(), vol 10947. Springer, Cham. https://doi.org/10.1007/978-3-319-93843-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-93843-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93842-4
Online ISBN: 978-3-319-93843-1
eBook Packages: Computer ScienceComputer Science (R0)