Skip to main content

Validating Revised Bloom’s Taxonomy Using Deep Knowledge Tracing

Part of the Lecture Notes in Computer Science book series (LNAI,volume 10947)

Abstract

Revised Bloom’s Taxonomy is used for classifying educational objectives. The said taxonomy describes a hierarchical ordering of cognitive skills from simple to complex. The Revised Taxonomy relaxed the strict cumulative hierarchical assumptions of the Original Taxonomy allowing overlaps. We use a knowledge tracing model, Deep Knowledge Tracing (DKT), to investigate the hierarchical nature of the Revised Taxonomy and also study the overlapping behavior of the Taxonomy. The DKT model is trained on about 42 million problems attempted on funtoot by the students. funtoot is an adaptive learning platform where students learn by answering problems. We propose a novel way to interpret the model’s output to measure the effects of each learning objective on every other learning objectives. The results confirm the relaxed hierarchy of the skills from simple to complex. Moreover, the results also suggest overlaps even among the non-adjacent skills.

Keywords

  • Deep knowledge tracing
  • Revised Bloom’s Taxonomy
  • Cognitive skills
  • Hierarchical taxonomy
  • Deep learning
  • Student modeling
  • Domain knowledge
  • funtoot

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-93843-1_17
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-93843-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    http://www.funtoot.com/.

  2. 2.

    https://en.wikipedia.org/wiki/Boards_of_Education_in_India.

References

  1. Agrawal, S., Lalwani, A.: Analysing problem sequencing strategies based on revised Bloom’s taxonomy using deep knowledge tracing. In: 14th International Conference on Intelligent Tutoring Systems, June 2018. (to appear)

    Google Scholar 

  2. Anderson, L.W., Krathwohl, D.R., Airasian, P., Cruikshank, K., Mayer, R., Pintrich, P., Raths, J., Wittrock, M.: A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy. Longman Publishing, New York (2001). Artz, A.F., Armour-Thomas, E. (1992). 9(2), 137–175

    Google Scholar 

  3. Athanassiou, N., McNett, J.M., Harvey, C.: Critical thinking in the management classroom: Bloom’s taxonomy as a learning tool. J. Manage. Educ. 27(5), 533–555 (2003)

    CrossRef  Google Scholar 

  4. Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H., Krathwohl, D.R.: Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain, vol. 19. David McKay Co. Inc., New York (1956)

    Google Scholar 

  5. Davis, F.B.: Research in comprehension in reading. Reading Res. Q. 3(4), 499–545 (1968)

    CrossRef  Google Scholar 

  6. Hancock, G.R.: Cognitive complexity and the comparability of multiple-choice and constructed-response test formats. J. Exp. Educ. 62(2), 143–157 (1994)

    CrossRef  Google Scholar 

  7. Hawks, K.W.: The effects of implementing Bloom’s taxonomy and utilizing the virginia standards of learning curriculum framework to develop mathematics lessons for elementary students (2010)

    Google Scholar 

  8. Hill, P., McGaw, B.: Testing the simplex assumption underlying Bloom’s taxonomy. Am. Educ. Res. J. 18(1), 93–101 (1981)

    Google Scholar 

  9. Klein, M.F.: Use of taxonomy of educational objectives (cognitive domain) in constructing tests for primary school pupils. J. Exp. Educ. 40(3), 38–50 (1972)

    CrossRef  Google Scholar 

  10. Krathwohl, D.R.: A revision of Bloom’s taxonomy: an overview. Theory Pract. 41(4), 212–218 (2002)

    CrossRef  Google Scholar 

  11. Kropp, R.P., Stoker, H.W., Bashaw, W.: The validation of the taxonomy of educational objectives. J. Exp. Educ. 34(3), 69–76 (1966)

    CrossRef  Google Scholar 

  12. Kunen, S., Cohen, R., Solman, R.: A levels-of-processing analysis of bloom’s taxonomy. J. Educ. Psychol. 73(2), 202 (1981)

    CrossRef  Google Scholar 

  13. Lalwani, A., Agrawal, S.: Few hundred parameters outperform few hundred thousand? Educational Data Mining (2017)

    Google Scholar 

  14. Madaus, G.F., Woods, E.M., Nuttall, R.L.: A causal model analysis of Bloom’s taxonomy. Am. Educ. Res. J. 10(4), 253–262 (1973)

    CrossRef  Google Scholar 

  15. Miller, W.G., Snowman, J.: Application of alternative statistical techniques to examine the hierarchical ordering in Bloom’s taxonomy. Am. Educ. Res. J. 16(3), 241–248 (1979)

    CrossRef  Google Scholar 

  16. Nkhoma, M.Z., Nkhoma, M.Z., Lam, T.K., Lam, T.K., Sriratanaviriyakul, N., Sriratanaviriyakul, N., Richardson, J., Richardson, J., Kam, B., Kam, B., et al.: Unpacking the revised Bloom’s taxonomy: developing case-based learning activities. Education + Training 59(3), 250–264 (2017)

    CrossRef  Google Scholar 

  17. Pachaury, A.: An empirical validation of taxonomy of educational objectives using McQuitty’s hierarchical syndrome analysis. Indian Educ. Rev. 6(2), 156–164 (1971)

    Google Scholar 

  18. Phillips, A.W., Smith, S.G., Straus, C.M.: Driving deeper learning by assessment: an adaptation of the revised Bloom’s taxonomy for medical imaging in gross anatomy. Acad. Radiol. 20(6), 784–789 (2013)

    CrossRef  Google Scholar 

  19. Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L.J., Sohl-Dickstein, J.: Deep knowledge tracing. In: Advances in Neural Information Processing Systems, pp. 505–513 (2015)

    Google Scholar 

  20. Stoker, H.W., Kropp, R.P.: Measurement of cognitive processes. J. Educ. Meas. 1(1), 39–42 (1964)

    CrossRef  Google Scholar 

  21. Subramaniam, R.: Problem-based learning: concept, theories, effectiveness and application to radiology teaching. J. Med. Imaging Radiat. Oncol. 50(4), 339–341 (2006)

    Google Scholar 

  22. Thomas, A.M.: Levels of Cognitive Behavior Measured in a Controlled Teaching Situation. Graduate School of Cornell University (1965)

    Google Scholar 

  23. Thompson, E., Luxton-Reilly, A., Whalley, J.L., Hu, M., Robbins, P.: Bloom’s taxonomy for CS assessment. In: Proceedings of the Tenth Conference on Australasian Computing Education, vol. 78, pp. 155–161. Australian Computer Society, Inc. (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Lalwani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Lalwani, A., Agrawal, S. (2018). Validating Revised Bloom’s Taxonomy Using Deep Knowledge Tracing. In: , et al. Artificial Intelligence in Education. AIED 2018. Lecture Notes in Computer Science(), vol 10947. Springer, Cham. https://doi.org/10.1007/978-3-319-93843-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93843-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93842-4

  • Online ISBN: 978-3-319-93843-1

  • eBook Packages: Computer ScienceComputer Science (R0)