Advertisement

Multi-drone Framework for Cooperative Deployment of Dynamic Wireless Sensor Networks

  • Jon-Vegard SørliEmail author
  • Olaf Hallan Graven
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10942)

Abstract

A system implementing a proposed framework for using multiple-cooperating-drones in the deployment of a dynamic sensor network is completed and preliminary tests performed. The main components of the system are implemented using a genetic strategy to create the main elements of the framework. These elements are sensor network topology, a multi objective genetic algorithm for path planning, and a cooperative coevolving genetic strategy for solving the optimal cooperation problem between drones. The framework allows for mission re-planning with changes to drone fleet status and environmental changes as a part of making a fully autonomous system of drones.

Keywords

UAV Drone Swarm Sensor network Algorithms Framework 

References

  1. 1.
    Boris, J., Obenschain, K., Patnaik, G.: Using CT-ANALYST TM to optimize sensor placement. In: Proceedings of the Chemical and Biological Sensing V, Orlando, vol. 5416, pp. 14–20 (2004)Google Scholar
  2. 2.
    Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30 (1965)CrossRefGoogle Scholar
  3. 3.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  4. 4.
    Evangelatos, O.: AIRWISE - An airborne wireless sensor network for ambient air pollution monitoring. In: Proceedings of the 4th International Conference on Sensor Networks, pp. 231–239 (2015). http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005203302310239
  5. 5.
    Kuawattanaphan, R., Kumrai, T., Champrasert, P.: Wireless sensor nodes redeployment using a multiobjective optimization evolutionary algorithm. In: IEEE International Conference of IEEE Region 10 (TENCON 2013), pp. 1–6 (2013). http://www.scopus.com/inward/record.url?eid=2-s2.0-84894328390&partnerID=tZOtx3y1
  6. 6.
    Kulau, U., Schildt, S., Wolf, L., Rottmann, S.: Ballistic Deployment of WSN Nodes using Model Rockets (2014)Google Scholar
  7. 7.
    US Naval Research Laboratory: CT-Analyst. http://www.nrl.navy.mil/lcp/ct-analyst
  8. 8.
    Machado, P., Tavares, J., Pereira, F., Costa, E.: Vehicle routing problem: doing it the evolutionary way. Proceedings of the Genetic and Evolutionary Computation Conference, p. 690, January 2002Google Scholar
  9. 9.
    Maza, I., Kondak, K., Bernard, M., Ollero, A.: Multi-UAV cooperation and control for load transportation and deployment. J. Intell. Robot. Syst. Theor. Appl. 57(1–4), 417–449 (2010)CrossRefGoogle Scholar
  10. 10.
    Mozaffari, M., Saad, W., Bennis, M., Debbah, M.: Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 20(8), 1647–1650 (2016)CrossRefGoogle Scholar
  11. 11.
    Oliveira, F.B.D.: Cooperative coevolutionary models for the multi-depot vehicle routing problem cooperative coevolutionary models for the multi-depot vehicle routing problem (2015)Google Scholar
  12. 12.
    Ollero, A., Marron, P.J., Bernard, M., Lepley, J., La Civita, M., Van Hoesel, L., De Andrés, E.: AWARE: platform for autonomous self-deploying and operation of wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs. In: Proceedings of the IEEE International Workshop on Safety, Security and Rescue Robotics, SSRR 2007, September 2007Google Scholar
  13. 13.
    Roberge, V., Tarbouchi, M., Labonte, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans. Ind. Inform. 9(1), 132–141 (2013). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6198334CrossRefGoogle Scholar
  14. 14.
    Syarif, A., Abouaissa, A., Idoumghar, L., Sari, R.F., Lorenz, P.: Performance analysis of evolutionary multi-objective based approach for deployment of wireless sensor network with the presence of fixed obstacles. In: IEEE Global Communications Conference, GLOBECOM 2014, pp. 1–6 (2014)Google Scholar
  15. 15.
    Tuna, G., Mumcu, T.V., Gulez, K., Gungor, V.C., Erturk, H.: Unmanned aerial vehicle aided wireless sensor network deployment system for post-disaster monitoring. Commun. Comput. Inf. Sci. 304, 298–305 (2012)Google Scholar
  16. 16.
    Wolfe, V., Frobe, W., Shrinivasan, V., Hsieh, T.Y.: Detecting and locating cell phone signals from avalanche victims using unmanned aerial vehicles. In: International Conference on Unmanned Aircraft Systems, ICUAS 2015, pp. 704–713 (2015)Google Scholar
  17. 17.
    Xu, Y., Yao, X.: A GA approach to the optimal placement of sensors in wireless sensor networks with obstacles and preferences. In: 3rd IEEE Consumer Communications and Networking Conference, CCNC 2006, vol. 1, pp. 127–131 (2006)Google Scholar
  18. 18.
    Yu, X., Gen, M.: Introduction to Evolutionary Algorithms. Springer, London (2010).  https://doi.org/10.1007/978-1-84996-129-5. http://www.springer.com/gp/book/9781849961288CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University College of Southeast NorwayKongsbergNorway

Personalised recommendations