Advertisement

Deep Regression Models for Local Interaction in Multi-agent Robot Tasks

  • Fredy MartínezEmail author
  • Cristian Penagos
  • Luis Pacheco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10942)

Abstract

A direct data-driven path planner for small autonomous robots is a desirable feature of robot swarms that would allow each agent of the system to directly produce control actions from sensor readings. This feature allows to bring the artificial system closer to its biological model, and facilitates the programming of tasks at the swarm system level. To develop this feature it is necessary to generate behavior models for different possible events during navigation. In this paper we propose to develop these models using deep regression. In accordance with the dependence of distance on obstacles in the environment along the sensor array, we propose the use of a recurrent neural network. The models are developed for different types of obstacles, free spaces and other robots. The scheme was successfully tested by simulation and on real robots for simple grouping tasks in unknown environments.

Keywords

Autonomous Big data Data-driven Sensor Motion planner 

Notes

Acknowledgments

This work was supported by the District University Francisco José de Caldas and the Scientific Research and Development Centre (CIDC). The views expressed in this paper are not necessarily endorsed by District University. The authors thank the research group ARMOS for the evaluation carried out on prototypes of ideas and strategies.

References

  1. 1.
    Benitez, J., Parra, L., Montiel, H.: Diseño de plataformas robóticas diferenciales conectadas en topología mesh para tecnología Zigbee en entornos cooperativos. Tekhnê 13(2), 13–18 (2016)Google Scholar
  2. 2.
    Jacinto, E., Giral, M., Martínez, F.: Modelo de navegación colectiva multi-agente basado en el quorum sensing bacterial. Tecnura 20(47), 29–38 (2016)CrossRefGoogle Scholar
  3. 3.
    Mane, S., Vhanale, S.: Real time obstacle detection for mobile robot navigation using stereo vision. In: International Conference on Computing, Analytics and Security Trends (CAST), pp. 1–6 (2016)Google Scholar
  4. 4.
    Martínez, F., Acero, D.: Robótica Autónoma: Acercamientos a algunos problemas centrales. CIDC, Distrital University Francisco José de Caldas (2015). ISBN 9789588897561Google Scholar
  5. 5.
    Nasrinahar, A., Huang, J.: Effective route planning of a mobile robot for static and dynamic obstacles with fuzzy logic. In: 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2016), pp. 1–6 (2016)Google Scholar
  6. 6.
    Nattharith, P., Serdar, M.: An indoor mobile robot development: a low-cost platform for robotics research. In: International Electrical Engineering Congress (iEECON 2014), pp. 1–4 (2014)Google Scholar
  7. 7.
    Oral, T., Polat, F.: MOD* lite: an incremental path planning algorithm taking care of multiple objectives. IEEE Trans. Cybern. 46(1), 245–257 (2016)CrossRefGoogle Scholar
  8. 8.
    Ortiz, O., Pastor, J., Alcover, P., Herrero, R.: Innovative mobile robot method: improving the learning of programming languages in engineering degrees. IEEE Trans. Educ. 60(2), 143–148 (2016)CrossRefGoogle Scholar
  9. 9.
    Rendón, A.: Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles. Tekhnê 12(2), 75–82 (2015)Google Scholar
  10. 10.
    Schmitt, S., Will, H., Aschenbrenner, B., Hillebrandt, T., Kyas, M.: A reference system for indoor localization testbeds. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN 2012), pp. 1–8 (2012)Google Scholar
  11. 11.
    Seon-Je, Y., Tae-Kyung, K., Tae-Yong, K., Jong-Koo, P.: Geomagnetic localization of mobile robot. In: International Conference on Mechatronics (ICM 2017), pp. 1–6 (2017)Google Scholar
  12. 12.
    Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., Gupta, V., Goodwine, B., Baras, J., Wang, S.: Toward a science of cyber-physical system integration. Proc. IEEE 100(1), 29–44 (2012)CrossRefGoogle Scholar
  13. 13.
    Teatro, T., Eklund, M., Milman, R.: Nonlinear model predictive control for omnidirectional robot motion planning and tracking with avoidance of moving obstacles. Can. J. Electr. Comput. Eng. 37(3), 151–156 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.District University Francisco José de CaldasBogotá D.C.Colombia

Personalised recommendations