Advertisement

Blockchain and IoT: Mind the Gap

  • Anass Sedrati
  • Mohamed Ahmed Abdelraheem
  • Shahid Raza
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 242)

Abstract

Blockchain, the core technology behind the first decentralized cryptocurrency, Bitcoin, has been recently proposed as a promising solution to create a viable decentralized network of Internet of Things (IoT) with good security and privacy properties. This survey investigates the currently proposed Blockchain-IoT solutions and examines their suitability for IoT devices.

Notes

Acknowledgments

This work is funded by the VR Strategic Research Area (SRA) Information and Communication Technology - The Next Generation (ICT TNG) program.

References

  1. 1.
    Office of Science UK Government Chief Scientific Advisor. Distributed ledger technology: beyond block chain (2016)Google Scholar
  2. 2.
    Bagci, I.E., Raza, S., Roedig, U., Voigt, T.: Fusion: coalesced confidential storage and communication framework for the iot. Secur. Commun. Netw. 9(15), 2656–2673 (2016). sec.1260CrossRefGoogle Scholar
  3. 3.
    Raza, S., Wallgren, L., Voigt, T.: SVELTE: real-time intrusion detection in the Internet of Things. Ad Hoc Netw. 11(8), 2661–2674 (2013)CrossRefGoogle Scholar
  4. 4.
    Bormann, C., Ersue, M., Keranen, A: Terminology for constrained-node networks. Technical report (2014)Google Scholar
  5. 5.
    Rescorla, E., Modadugu, N.: Datagram transport layer security version 1.2 (2012)Google Scholar
  6. 6.
    Raza, S., Helgason, T., Papadimitratos, P., Voigt, T.: Securesense: end-to-end secure communication architecture for the cloud-connected Internet of Things. Future Gener. Comput. Syst. 77, pp. 40–51. Elsevier (2017)Google Scholar
  7. 7.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)Google Scholar
  8. 8.
  9. 9.
    Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)Google Scholar
  10. 10.
    Biryukov, A., Khovratovich, D.: Equihash: Asymmetric proof-of-work based on the generalized birthday problem (2017)Google Scholar
  11. 11.
    Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller, A., Saxena, P., Shi, E., Gün Sirer, E., Song, D., Wattenhofer, R.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53357-4_8CrossRefGoogle Scholar
  12. 12.
    Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper, 151 (2014)Google Scholar
  13. 13.
    Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: Using blockchain for medical data access and permission management. In: International Conference on Open and Big Data (OBD), pp. 25–30. IEEE (2016)Google Scholar
  14. 14.
    Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_2CrossRefGoogle Scholar
  15. 15.
    Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet measurement Conference, pp. 127–140. ACM (2013)Google Scholar
  16. 16.
    Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–51. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_4CrossRefGoogle Scholar
  17. 17.
    Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin mixing for bitcoin. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11212-1_20CrossRefGoogle Scholar
  18. 18.
    Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45472-5_31CrossRefGoogle Scholar
  19. 19.
    Valenta, L., Rowan, B.: Blindcoin: blinded, accountable mixes for bitcoin. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 112–126. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48051-9_9CrossRefGoogle Scholar
  20. 20.
    Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous distributed e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 397–411. IEEE (2013)Google Scholar
  21. 21.
    Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero knowledge for a von neumann architecture. Cryptology ePrint Archive, Report 2013/879 (2013). http://eprint.iacr.org/2013/879
  22. 22.
    Brody, P., Pureswaran, V.: Device democracy: Saving the future of the Internet of Things. IBM, September 2014Google Scholar
  23. 23.
    Popov, S.: The tangle (2016). https://iota.org/IOTA_Whitepaper.pdf
  24. 24.
  25. 25.
    Sønstebø, D.: The transparency compendium. https://blog.iota.org/the-transparency-compendium-26aa5bb8e260
  26. 26.
    Heilman, T.D.E., Narula, N., Virza, M.: IOTA vulnerability report: Cryptanalysis of the curl hash function enabling practical signature forgery attacks on the IOTA cryptocurrency (2017). https://github.com/mit-dci/tangled-curl
  27. 27.
    Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security of the winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21969-6_23CrossRefGoogle Scholar
  28. 28.
    Guardtime. KSI blockchain technology. https://guardtime.com/technology/ksi-technology
  29. 29.
    Buldas, A., Kroonmaa, A., Laanoja, R.: Keyless signatures’ infrastructure: how to build global distributed hash-trees. In: Riis Nielson, H., Gollmann, D. (eds.) NordSec 2013. LNCS, vol. 8208, pp. 313–320. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41488-6_21CrossRefGoogle Scholar
  30. 30.
    Cachin, C.: Architecture of the hyperledger blockchain fabric. In: Workshop on Distributed Cryptocurrencies and Consensus Ledgers (2016)Google Scholar
  31. 31.
    Zyskind, G., Nathan, O., Pentland, A.: Enigma: Decentralized computation platform with guaranteed privacy (2015). arXiv preprint arXiv:1506.03471
  32. 32.
    Buterin, V.: Light clients and proof of stake (2015). https://blog.ethereum.org/2015/01/10/light-clients-proof-stake/

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Anass Sedrati
    • 1
    • 2
  • Mohamed Ahmed Abdelraheem
    • 2
  • Shahid Raza
    • 2
  1. 1.INPTRabatMorocco
  2. 2.RISE SICSStockholmSweden

Personalised recommendations