Advertisement

Leveraging Document-Specific Information for Classifying Relations in Scientific Articles

  • Qin DaiEmail author
  • Naoya Inoue
  • Paul Reisert
  • Kentaro Inui
Conference paper
  • 547 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10838)

Abstract

Tremendous amount of knowledge is present in the ever-growing scientific literature. In order to grasp this massive amount knowledge, various computational tasks are proposed for training computers to read and analyze scientific documents. As one of these task, semantic relationship classification aims at automatically analyzing semantic relationships in scientific documents. Conventionally, only a limited number of commonly used knowledge bases such as Wikipedia are used for collecting background information for this task. In this work, we hypothesize that scientific papers also could be utilized as a source of background information for semantic relationship classification. Based on the hypothesis, we propose the model that is capable of extracting background information from unannotated scientific papers. Preliminary experiments on the RANIS dataset [1] proves the effectiveness of the proposed model on relationship classification in scientific articles.

Keywords

Semantic relationship Scientific document Lexical chain 

Notes

Acknowledgement

This work was supported by JST CREST Grant Number JPMJCR1513, Japan and KAKENHI Grant Number 16H06614.

References

  1. 1.
    Tateisi, Y., Shidahara, Y., Miyao, Y., Aizawa, A.: Annotation of computer science papers for semantic relation extraction. In: LREC, pp. 1423–1429 (2014)Google Scholar
  2. 2.
    Teufel, S., et al.: Argumentative zoning: information extraction from scientific text. Ph.D. thesis, University of Edinburgh (2000)Google Scholar
  3. 3.
    Cohen, K.B., Demner-Fushman, D., Ananiadou, S., Tsujii, J.: BioNLP 2017 (2017)Google Scholar
  4. 4.
    Augenstein, I., Das, M., Riedel, S., Vikraman, L., McCallum, A.: SemEval 2017 Task 10: ScienceIE-extracting keyphrases and relations from scientific publications. arXiv preprint arXiv:1704.02853 (2017)
  5. 5.
    Kumar, S.: A survey of deep learning methods for relation extraction. arXiv preprint arXiv:1705.03645 (2017)
  6. 6.
    Zhou, D., Zhong, D., He, Y.: Biomedical relation extraction: from binary to complex. Comput. Math. Methods Med. 2014, 18 p. (2014).  https://doi.org/10.1155/2014/298473. Article ID 298473
  7. 7.
    Boschee, E., Weischedel, R., Zamanian, A.: Automatic information extraction. In: Proceedings of the International Conference on Intelligence Analysis, vol. 71. Citeseer (2005)Google Scholar
  8. 8.
    Suchanek, F.M., Ifrim, G., Weikum, G.: Combining linguistic and statistical analysis to extract relations from web documents. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 712–717. ACM (2006)Google Scholar
  9. 9.
    Chan, Y.S., Roth, D.: Exploiting background knowledge for relation extraction. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 152–160. Association for Computational Linguistics (2010)Google Scholar
  10. 10.
    Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J., et al.: Relation classification via convolutional deep neural network. In: COLING, pp. 2335–2344 (2014)Google Scholar
  11. 11.
    Zhang, D., Wang, D.: Relation classification via recurrent neural network. arXiv preprint arXiv:1508.01006 (2015)
  12. 12.
    dos Santos, C.N., Xiang, B., Zhou, B.: Classifying relations by ranking with convolutional neural networks. arXiv preprint arXiv:1504.06580 (2015)
  13. 13.
    Ammar, W., Peters, M., Bhagavatula, C., Power, R.: The AI2 system at SemEval-2017 Task 10 (ScienceIE): semi-supervised end-to-end entity and relation extraction. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 592–596 (2017)Google Scholar
  14. 14.
    Miwa, M., Bansal, M.: End-to-end relation extraction using LSTMs on sequences and tree structures. arXiv preprint arXiv:1601.00770 (2016)
  15. 15.
    GuoDong, Z., Jian, S., Jie, Z., Min, Z.: Exploring various knowledge in relation extraction. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 427–434. Association for Computational Linguistics (2005)Google Scholar
  16. 16.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  17. 17.
    Gu, J., Sun, F., Qian, L., Zhou, G.: Chemical-induced disease relation extraction via convolutional neural network. Database 2017, bax024 (2017).  https://doi.org/10.1093/database/bax024CrossRefGoogle Scholar
  18. 18.
    Hahn-Powell, G., Bell, D., Valenzuela-Escárcega, M.A., Surdeanu, M.: This before that: causal precedence in the biomedical domain. arXiv preprint arXiv:1606.08089 (2016)
  19. 19.
    Yin, W., Kann, K., Yu, M., Schütze, H.: Comparative study of CNN and RNN for natural language processing. arXiv preprint arXiv:1702.01923 (2017)
  20. 20.
    Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)CrossRefGoogle Scholar
  21. 21.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  22. 22.
    Galley, M., McKeown, K.: Improving word sense disambiguation in lexical chaining (2003)Google Scholar
  23. 23.
    Morris, J., Hirst, G.: Lexical cohesion computed by thesaural relations as an indicator of the structure of text. Comput. Linguisti. 17(1), 21–48 (1991)Google Scholar
  24. 24.
    Mascarell, L.: Lexical chains meet word embeddings in document-level statistical machine translation. In: Proceedings of the Third Workshop on Discourse in Machine Translation, pp. 99–109 (2017)Google Scholar
  25. 25.
    Wang, T., Li, Y., Bontcheva, K., Cunningham, H., Wang, J.: Automatic extraction of hierarchical relations from text. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 215–229. Springer, Heidelberg (2006).  https://doi.org/10.1007/11762256_18CrossRefGoogle Scholar
  26. 26.
    Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence embeddings (2016)Google Scholar
  27. 27.
    Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math compiler in Python. In: Proceedings of the 9th Python in Science Conference, pp. 1–7 (2010)Google Scholar
  28. 28.
    Bird, S., Dale, R., Dorr, B.J., Gibson, B.R., Joseph, M.T., Kan, M.Y., Lee, D., Powley, B., Radev, D.R., Tan, Y.F., et al.: The ACL anthology reference corpus: a reference dataset for bibliographic research in computational linguistics. In: LREC (2008)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Qin Dai
    • 1
    Email author
  • Naoya Inoue
    • 1
  • Paul Reisert
    • 2
  • Kentaro Inui
    • 1
    • 2
  1. 1.Tohoku UniversitySendaiJapan
  2. 2.RIKEN Center for Advanced Intelligence ProjectWakoJapan

Personalised recommendations