Abstract
This paper deals with the interconnections between mathematics, metaphysics, and logic in the work of Leibniz. On the one hand, it touches upon some practical aspects such as Leibniz’s construction of a Four-species calculating machine, a mechanical digital calculating machine, and even a cipher machine. On the other hand, it examines how far Leibniz’s metaphysical dreams concerning the “calculus ratiocinator” and its underlying “characteristica universalis” have in fact been realized by the great philosopher. In particular it will be shown that Leibniz not only developed an “intensional” algebra of concepts which is provably equivalent to Boole’s “extensional” algebra of sets, but that he also discovered some basic laws of quantifier logic which allowed him to define individual concepts as maximally-consistent concepts. Moreover, Leibniz had the ingenious idea of transforming the basic principles of arithmetical addition and subtraction into a theory of “real” addition and subtraction thus obtaining some important building blocks of elementary set-theory.
Keywords
- Leibniz
- Calculating machine
- Metaphysic
- Logic
- Set-theory
This is a preview of subscription content, access via your institution.
Buying options







Notes
- 1.
https://en.wikipedia.org/wiki/Calculus_ratiocinator; online access January 3, 2017. The concluding quote comes from Rogers (1963), p. 943.
- 2.
Cf. Mackensen (1990), p. 56–57 (my translation).
- 3.
In “Machina arithmetica in qua non additio tantum et subtractio sed et multiplicatio nullo, divisio vero paene nullo animi labore peragantur” Leibniz wrote: “Indignum est excellentium virorum horas servili calculandi perire quia Machina adhibita velissimo cuique secure transcribi possit.” The translation is taken from “Leibniz on his calculating machine” in Smith (1929), 173–181.
- 4.
- 5.
Cf. Mackensen (1990), p. 59 (my translation).
- 6.
Cf. A I 2, p. 125; the translation is from Rescher (2012), p. 35–36.
- 7.
Cf. A IV 4, p. 68; translation from Rescher (2012), p. 37.
- 8.
This remark, which Louis Couturat chose as motto for his ground-breaking book (1901), was written by Leibniz on the margin of the “Dialogus” of August 1677; cf. GP 7, p. 191. As far as I know, Leibniz nowhere seriously discussed the problem of the proper creation of the world, i.e. the transition from the mere idea to its physical actualization.
- 9.
- 10.
Cf. GP 7, p. 200; the translation has been adopted from https://en.wikiquote.org/wiki/Gottfried_Leibniz
- 11.
Cf. A VI, 4, p. 443: “Itaque profertur hic calculus quidam novus et mirificus, qui in omnibus nostris ratiocinationibus locum habet, et qui non minus accurate procedit, quam Arithmetica aut Algebra”.
- 12.
Parkinson (1966), p.10.
- 13.
Cf. the fragment “De Numeris Characteristicis ad Linguam universalem constituendam” in GP 7, p. 184–9. The translation has been adopted with some modifications from Ariew & Garber (1989), p. 6–8.
- 14.
Cf. GP 7, p. 185 and p. 187.
- 15.
Cf. GP 7, p. 189, and Ariew and Garber (1989), p. 9–10.
- 16.
- 17.
According to Leibniz’s condition, the valid mood Darii would become invalid. The assignment of numbers B = 3, C = 6, D = 2 satisfies the premise ‘All C are D’, because 6 can be divided by 2; furthermore ‘Some B are C’ becomes true because the number of the predicate, C = 6, is divisible by the number of the subject, B = 3. But the conclusion ‘Some B are D’ would result as false since neither B = 3 can be divided by D = 2, nor conversely D by B. Thus also Leibniz soon noticed that for the truth of a particular affirmative proposition “it is not necessary that the subject can be divided by the predicate or the predicate divided by the subject”; cf. C., p. 57.
- 18.
Cf. “Regulae ex quibus de bonitate consequentiarum […] judicari potest, per numeros”, in C. p. 77–84; an English version may be found in Parkinson (1966), p. 25–32.
- 19.
Cf. C., p. 25–28; condition (vi) was put forward only in another fragment. Cf. C., p. 245–7: “Ex hoc calculo omnes modi et figurae derivari possunt per solas regulas Numerorum. Si nosse volumus an aliqua figura procedat vi formae, videmus an contradictorium conclusionis sit compatibile cum praemissis, id est an numeri reperiri possint satisfacientes simul praemissis et contradictoriae conclusionis; quodsi nulli reperiri possunt, concludet argumentum vi formae.”
- 20.
Cf. GP 7, p. 189, or Ariew and Garber (1989), p. 10.
- 21.
Cf. Arnauld and Nicole (1683).
- 22.
Cf. C., p. 80. In Arnauld & Nicole (1683) the principle of subalternation is put forward informally as follows: “Les propositions particulières sont enfermés dans les générales de même nature, et non les générales dans les particulières, I dans A, et O dans E, et non A dans I, ni E dans O”.
- 23.
Cf. C., p. 410–411.
- 24.
Cf. C., p. 411.
- 25.
As will turn out below, this weak condition of existential import is tantamount to the assumption that concept B is self-consistent!
- 26.
Cf. A VI, 4, p. 274: “Subjectum a in exemplo praecedenti, Omnis homo. Semper enim signum universale subjecto praefixum intelligatur”.
- 27.
Cf. GP 7, p. 218 or the translation in Parkinson (1966), p. 33. For the sake of uniformity, Leibniz’s small letters ‘a’, ‘b’ have been replaced by capitals ‘A’, ‘B’.
- 28.
Cf. C., p. 367 or the translation in Parkinson (1966), p. 57.
- 29.
- 30.
Cf. GP 5, p. 469.
- 31.
Cf. C., p. 235.
- 32.
Cf. Quine (1953), p. 21.
- 33.
Cf. A VI, 3, p. 506.
- 34.
Cf. A VI, 4, p. 154.
- 35.
Leibniz stated these laws especially in the “Generales Inquisitiones”. Cf. A VI, 4, p. 751 “Propositio per se vera est A coincidit ipsi A”; p. 750: “(6) Si A coincidit ipsi B, B coincidit ipsi A […] (8) Si A coincidit ipsi B, et B coincidit ipsi C, etiam A coincidit ipsi B”.
- 36.
Cf. A VI, 4, p. 148: “AB est A pendet a significatione huiusmodi compositionis literarum. Hoc ipsum enim vult AB, nempe id quod est A, itemque B”.
- 37.
Cf. GP 7, p. 221–2, or the translation in Parkinson (1966), p. 40.
- 38.
Cf. Parkinson (1966), p. 40.
- 39.
Cf. Parkinson (1966), p. 58, fn. 4.
- 40.
Cf. C., p. 378, or the translation in Parkinson (1966), p. 67.
- 41.
The first quotation is from April 1679, the second from around 1686; cf. A VI, 4, p. 248 and p. 804.
- 42.
Cf. § 96 of the “General Inquiries”, e.g., A VI, 4, p. 767.
- 43.
Cf. § 77 of the “General Inquiries”, e.g. A VI, 4, p 764, or the translation in Parkinson (1966), p. 67.
- 44.
In the “General Inquiries”, the above principles had been formulated as follows: “A proposition false in itself is ‘A coincides with not-A’” (§ 11); “If A = B, then A ≠ not-B” (§ 171, Seventh); “It is false that B contains not-B, that is, B doesn’t contain not-B” (§ 43); and “A is B, therefore A isn’t not-B” (§ 91). Cf. A VI, 4, p. 751, p. 783, p. 755, and p. 766, or the translation in Parkinson (1966), p. 56, p. 83, p. 59, and p. 68.
- 45.
Cf. Grua, p. 536.
- 46.
Cf. A VI, 4, p. 766: “Non valet consequentia: Si A non est non-B, tunc A est B, seu Omne animal esse non hominem falsum est, quidem; sed tamen hinc non sequitur Omne animal esse hominem.”
- 47.
Cf., e.g., § 21 of “Specimina calculi rationalis” in A VI, 4, p. 813: “A non est B idem est quod A est non B.”
- 48.
Cf. A VI, 4, p. 218; the quoted example of Apostle Peter only appears in the critical apparatus of variants; Leibniz later replaced it by the less fortunate example ‘this piece of gold is a metal’ vs. ‘this piece of gold is a non-metal’.
- 49.
Cf. A VI, 4, p. 218; critical apparatus, variant (d): “Imo hic patet me errasse, neque enim procedit regula.”
- 50.
Cf. A VI, 4, p. 218; in order to avoid confusions, I have interchanged Leibniz’s symbolic letters ‘B’ and ‘A’.
- 51.
Cf. A VI, 4, p. 749, fn 8: “A non-A contradictorium est. Possibile est quod non continet contradictorium seu A non-A. Possibile est quod non est Y, non-Y”.
- 52.
Cf. GP 7, p. 211–217, or the translation in Parkinson (1966), p. 115–121.
- 53.
Cf. § 55 of the “General Inquiries”, e.g. A VI, 4, p. 757, or the translation in Parkinson (1966), p. 60.
- 54.
More exactly, this holds only for the implication ¬P(A∼B) → A∈B, while the converse A∈B → ¬P(A∼B) is easily proven: If A∈B, then (by Cont 3) A = AB, hence (by Iden 6) A∼B = AB∼B, and thus (A∼B)∈(B∼B), i.e. ¬P(A∼B). Cf. A VI, 4, p. 863: “Vera propositio categorica affirmativa universalis est: A est B, si A et AB coincidat et A sit possibile, et B sit possibile. Hinc sequitur, si A est B, vera propositio est, A non-B implicare contradictionem, nam pro A substituendo aequivalens AB fit AB non-B quod manifeste est contradictorium”.
- 55.
Cf. Parkinson (1966), p. 81.
- 56.
Consider the concept A(∼A(∼B)) which contains A(∼A). Since A∼A is contradictory, it follows by Poss 2 that A(∼A(∼B)) is also impossible; but from ¬P(A(∼A(∼B))) it immediately follows by Poss 3 that A(∼A)∈B!.
- 57.
The inference from a contradictory pair of premises, α, ¬α to an arbitrary conclusion β was well known in Medieval logic, but Leibniz wasn’t convinced of its validity. In his excerpts from Caramuel’s Leptotatos (A VI 4, p. 1334–1343) he considered the “argumentatio curiose” by means of which, e.g., the conclusion ‘Circulus habet 4 angulos’ is derived from the premises ‘Petrus currit’ and ‘Petrus non currit’. Although the deduction is based on two impeccable formal principles, Leibniz annotated: “Videtur esse sophisma”.
- 58.
Leibniz knew quite well that the corresponding propositional connective (α∨β) can similarly be defined as ¬(¬α ∧¬β). For a closer discussion cf. Lenzen (1983), p. 132–133.
- 59.
Cf. A VI, 4, p. 751 or the translation in Parkinson (1966), p. 56
- 60.
Cf. A VI, 4, p. 751, fn. 13, or Parkinson (1966), p. 56, fn. 1: “It is noteworthy that for ‘A = BY’ one can also say ‘A = AB’ so that there is no need to introduce a new letter”.
- 61.
This proof was given by Leibniz himself in the important paper “Primaria Calculi Logic Fundamenta” of August 1690; cf. C., 235.
- 62.
Cf. C., 259–261, or the text-critical edition in A VI, 4, p. 807–814.
- 63.
Cf. C., p. 261.
- 64.
Cf. C., p. 260.
- 65.
Cf. A VI, 4, p. 753: “(32) Propositio Negativa. A non continet B, seu A esse (continere) B falsum est., seu A non coincidit BY.”
- 66.
- 67.
Cf. A VI, 4, p. 217–218.
- 68.
Cf. A VI, 4, p. 218, lines 3–6, variant (d). The long story of Leibniz’s cardinal mistake of mixing up ‘A isn’t B’ and ‘A is not-B’ is analyzed in detail in Lenzen (1986).
- 69.
Cf. the text-critical edition in A VI, 4, p. 830–845 and 845–855; English translations may be found in Parkinson (1966), p. 122–130, 131–144.
- 70.
Cf., e.g., Parkinson (1966), p. 131–144 (Definition 3, Propositions 13, 14 and 17).
- 71.
Cf. Parkinson (1966), p. 132 (Axiom 1).
- 72.
Cf. Parkinson (1966), p. 132.
- 73.
Cf. C., p. 267.
- 74.
Cf. Parkinson (1966), p. 124 (Axiom 2).
- 75.
Cf. C., p. 267, # 29: “Itaque si A + B = C, erit A = C-B […] Sed opus est A et B nihil habere commune”.
- 76.
Cf. Parkinson (1966), p. 123, who misleadingly inserts the word ‘term’ before the entities M, A, B, while Leibniz himself spoke more neutrally of “aliquid M”!
- 77.
Cf. Parkinson (1966), p. 130.
- 78.
Cf. Parkinson (1966), p. 127, Case 2 of Theorem IX: “Let us assume meanwhile that E is everything which A and G have in common – if they have something in common, so that if they have nothing in common, E = Nothing”.
- 79.
Cf. Parkinson (1966), p. 128, Theorem X.
References
Leibniz’s Works and Manuscripts
(A) Deutsche Akademie der Wissenschaften (Ed.). Sämtliche Schriften und Briefe, quoted according to series (I–VIII) and volume. Cf. in particular series VI, Philosophische Schriften. Darmstadt 1930, Berlin 1962 ff.
(C.) Couturat, L. (Ed.). Opuscules et fragments inédits de Leibniz. Paris 1903, reprint Hildesheim 1961.
(GP) Gerhardt, C. I. (Ed.). Die philosophischen Schriften von Gottfried Wilhelm Leibniz, 7 volumes, Berlin 1875–1890, reprint Hildesheim 1965; quoted according to volume and page.
(GRUA) Grua, G. (Ed.). G. W. Leibniz – Textes inédits, Paris 1948 (2 volumes).
(LH) Bodemann, E. Die Leibniz-Handschriften der Königlichen öffentlichen Bibliothek zu Hannover, Hannover & Leipzig 1895, reprint Hildesheim 1966.
Secondary Literature
Ariew, R., & Garber, D. (Eds.). (1989). G. W. Leibniz – philosophical essays. Indianapolis: Hackett.
Arnauld, A., & Nicole, P (1683) La Logique ou L’Art de Penser (5th ed.), reprint Paris 1965.
Couturat, L. (1901). La Logique de Leibniz d‘aprés des documents inédits. Paris, reprint Hildesheim 1985.
Dürr, K. (1930). Neue Beleuchtung einer Theorie von Leibniz – Grundzüge des Logikkalküls. Darmstadt: O. Reichl.
Lenzen, W. (1983). Zur extensionalen und ≫intensionalen≪ Interpretation der Leibnizschen Logik. Studia Leibnitiana, 15, 129–148.
Lenzen, W. (1984). Leibniz und die Boolesche Algebra. Studia Leibnitiana, 16, 187–203.
Lenzen, W. (1986). ‘Non est’ non est ‘est non’ – Zu Leibnizens Theorie der Negation. Studia Leibnitiana, 18, 1–37.
Lenzen, W. (1989). Arithmetical vs. ‘Real’ addition – a case study of the relation between logic, mathematics, and metaphysics in Leibniz. In N. Rescher (Ed.), Leibnizian inquiries – a group of essays (pp. 149–157). Lanham: University Press of America.
Lenzen, W. (1990). Das System der Leibnizschen Logik. Berlin: de Gruyter.
Lenzen, W. (2000). Guilielmi Pacidii Non plus ultra – oder – Eine Rekonstruktion des Leibnizschen Plus-Minus-Kalküls. Philosophiegeschichte und logische Analyse, 3, 71–118.
Lenzen, W. (2004). Logical criteria for individual(concept)s. In M. Carrara, A. M. Nunziante, & G. Tomasi (Eds.), Individuals, minds, and bodies: Themes from Leibniz (pp. 87–107). Stuttgart: Franz Steiner Verlag.
Lukasiewicz, J. (1951). Aristotle’s syllogistic – From the standpoint of modern formal logic. Oxford: Clarendon Press.
Mackensen, L. v. (1990). Die ersten dekadischen und dualen Rechenmaschinen. In Stein/Heinekamp, pp. 52–61.
Parkinson, G. H. R. (Ed.). (1966). Leibniz logical papers – A selection. Oxford: Clarendon Press.
Quine, W. V. O. (1953). From a logical point of view. New York: Harper and Row.
Rescher, N. (2012). Leibniz and cryptography – An account on the occasion of the initial exhibition of the reconstruction of Leibniz’s Cipher Machine. Pittsburgh: University Library System, University of Pittsburgh.
Rogers, H., Jr. (1963). An example in mathematical logic. The American Mathematical Monthly, 70, 929–945.
Sanchez-Mazas, M. (1979). Simplification de l’arithmétisation leibnitienne de la syllogistique par l’expression arithmétique de la notion intensionelle du ≫non ens≪. Studia Leibnitiana Sonderheft, 8, 46–58.
Smith, D. E. (Ed.). (1929). A source book in mathematics (Vol. 1). New York: Dover Publications.
Sotirov, V. (1999). Arithmetizations of Syllogistic à la Leibniz. Journal of Applied Non-Classical Logics, 9, 387–405.
Stein, E., & Heinekamp, A. (1990). Gottfried Wilhelm Leibniz – Das Wirken des großen Philosophen und Universalgelehrten als Mathematiker, Physiker, Techniker. Hannover: Gottfried-Wilhelm-Leibniz-Ges.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Lenzen, W. (2018). Leibniz and the Calculus Ratiocinator. In: Hansson, S. (eds) Technology and Mathematics. Philosophy of Engineering and Technology, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-93779-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-93779-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93778-6
Online ISBN: 978-3-319-93779-3
eBook Packages: Religion and PhilosophyPhilosophy and Religion (R0)