Skip to main content

What the Applicability of Mathematics Says About Its Philosophy

  • Chapter
  • First Online:

Part of the book series: Philosophy of Engineering and Technology ((POET,volume 30))

Abstract

What does the existence of applied mathematics say about the philosophy of mathematics? This is the question explored in this chapter, as we take as axiomatic the existence of a successful applied mathematics, and use that axiom to examine the various claims on the nature of mathematics which have been made since the time of Pythagoras. These claims – on the status of mathematical objects and how we can obtain reliable knowledge of them – are presented here in four “schools” of the philosophy of mathematics. The perspective and claims of each school and some of its subschools are presented, along with some historical development of the school’s ideas. Each school is then examined under what we call the lens of the existence of applied mathematics: what does the existence of applied mathematics imply for the competing claims of these various schools? Although, unsurprisingly, this millennia-old debate is not resolved in the next few pages, some of the key issues are brought into sharp focus by the lens. We end with a summary and a tentative discussion of the physicist Max Tegmark’s Mathematical Universe Hypothesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bagaria, J. (2008). Set theory. In T. Gowers (Ed.), The Princeton companion to mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Balaguer, M. (1998). Platonism and anti-Platonism in mathematics. Oxford: Oxford University Press.

    Google Scholar 

  • Balauger, M. (2016). Platonism in metaphysics. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2016 Edition), viewed 12 Feb 2017. https://plato.stanford.edu/archives/spr2016/entries/platonism/

  • Barrow, J. D. (2000). Between inner space and outer space. Oxford: Oxford University Press.

    Google Scholar 

  • Barrow-Green, J., & Siegmund-Schultze, R. (2015). The history of applied mathematics. In N. J. Higham (Ed.), The Princeton companion to applied mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Benacerraf, P. (1965). What numbers could not be, Philosophical Review, 74, 47–73. Reprinted in Benacerraf, P., & Putnam, H. (Eds.). (1983). Philosophy of mathematics: Selected readings, second edition. Cambridge: Cambridge University Press.

    Google Scholar 

  • Benacerraf, P. (1973). Mathematical truth. In P. Benacerraf & H. Putnam (Eds.), (1983) Philosophy of mathematics: Selected readings (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Benacerraf, P., & Putnam, H. (Eds.). (1983). Philosophy of mathematics: Selected readings (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Billinge, H. (2000). Applied constructive mathematics: On Hellman’s ‘Mathematical constructivism in spacetime’. The British Journal for the Philosophy of Science, 51(2), 299–318.

    Article  Google Scholar 

  • Bishop, E. (1967). Foundations of constructive analysis. New York: McGraw-Hill.

    Google Scholar 

  • Bishop, E., & Bridges, D. (1985). Constructive analysis. Heidelberg: Springer Verlag.

    Book  Google Scholar 

  • Bostock, D. (1979). Logic and arithmetic (Vol. 2). Oxford: Clarendon Press.

    Google Scholar 

  • Bostock, D. (1980). A study of type-neutrality. Journal of Philosophical Logic, 9, 211–296, 363–414.

    Article  Google Scholar 

  • Bostock, D. (2009). Philosophy of mathematics. Chichester: Wiley-Blackwell.

    Book  Google Scholar 

  • Bridges, D. S. (1995). Constructive mathematics and unbounded operators: A reply to Hellman. Journal of Philosophical Logic, 24(5), 549–561.

    Article  Google Scholar 

  • Bridges, D. S. (1999). Can constructive mathematics be applied in physics? Journal of Philosophical Logic, 28(5), 439–453.

    Article  Google Scholar 

  • Bridges, D. S. (2016). The continuum hypothesis implies excluded middle. In D. Probst & P. Schuster (Eds.), Concepts of proof in mathematics, philosophy, and computer science. Berlin: Walter De Gruyter.

    Google Scholar 

  • Brouwer, L. E. J. (1907). On the foundations of mathematics. PhD thesis, Universiteit van Amsterdam. English translation in Brouwer, L. E. J. (1975). Collected Works 1. Philosophy and foundations of mathematics (Heyting, A., Ed.). North-Holland.

    Google Scholar 

  • Brouwer, L. E. J. (1981). Brouwer’s Cambridge lectures on intuitionism (D. van Dalen, Ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bueno, O., & Linnebo, O. (Eds.). (2009). New waves in philosophy of mathematics. Basingstoke: Palgrave Macmillan.

    Google Scholar 

  • Cartwright, N. (1984). Causation in physics: Causal processes and mathematical derivations. Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. 1984. Volume Two: Symposia and Invited Papers, pp. 391–-404.

    Google Scholar 

  • Chabert, J.-L. (2008). Algorithms. In T. Gowers (Ed.), The Princeton companion to mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Cooper, J. M. (Ed.). (1997). Plato: Complete works. Indianapolis: Hackett Publishing Company.

    Google Scholar 

  • Courant, R., & Robbins, H. (1941). What is mathematics? Oxford: Oxford University Press.

    Google Scholar 

  • Davis, P. J., & Hersh, R. (1981). The mathematical experience. Boston: Birkhäuser.

    Google Scholar 

  • Dedekind, R. (1888). The nature and meaning of numbers, translated from the German by WW Beman in Dedekind, R. (1963). Essays on the theory of numbers. New York: Dover.

    Google Scholar 

  • Deutsch, D. (2011). The beginning of infinity: Explanations that transform the world. London: Allen Lane.

    Google Scholar 

  • Dummett, D. (1977). Elements of intuitionism. Oxford: Clarendon Press.

    Google Scholar 

  • Extance, A. (2016). How DNA could store all the world’s data. Nature, 537, 22–24.

    Article  Google Scholar 

  • Farmelo, G. (2002). It must be beautiful: Great equations of modern science. London: Granta Books.

    Google Scholar 

  • Ferreirós, J. (2008). The crisis in the foundations of mathematics. In T. Gowers (Ed.), The Princeton companion to mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Field, H. (1980). Science without numbers. Princeton: Princeton University Press.

    Google Scholar 

  • Field, H. (1992). A nominalistic proof of the conservativeness of set theory. Journal of Philosophical Logic, 21, 111–123.

    Article  Google Scholar 

  • Gardner, M. (1970). Mathematical games – The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223, 120–123.

    Article  Google Scholar 

  • Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik Physik, 38, 173–198. English translation in Gödel, K. (1986). Collected works I. Publications 1929–1936 (Feferman, S., et al., Eds.). Oxford: Oxford University Press.

    Google Scholar 

  • Gowers, T. (2008). The Princeton companion to mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Hardy, G. H. (1940). A mathematician’s apology. Cambridge: Cambridge University Press. Reprinted in 1992.

    Google Scholar 

  • Hellman, G. (1993). Constructive mathematics and quantum mechanics: Unbounded operators and the spectral theorem. Journal of Philosophical Logic, 22(3), 221–248.

    Article  Google Scholar 

  • Hellman, G. (1997). Quantum mechanical unbounded operators and constructive mathematics – a rejoinder to Bridges. Journal of Philosophical Logic, 26(2), 121–127.

    Article  Google Scholar 

  • Hellman, G. (1998). Mathematical constructivism in spacetime. The British Journal for the Philosophy of Science, 49(3), 425–450.

    Article  Google Scholar 

  • Higham, N. J. (Ed.). (2015a). The Princeton companion to applied mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Higham, N. J. (2015b). What is applied mathematics. In N. J. Higham (Ed.), The Princeton companion to applied mathematics. Princeton: Princeton University Press.

    Chapter  Google Scholar 

  • Hilbert, D. (1899). The foundations of geometry. Translated from German by EJ Townsend, 1950. La Salle: Open Court Publishing Company.

    Google Scholar 

  • Hilbert, D. (1902). Mathematical problems. Bulletin of the American Mathematical Society, 8, 437–479, translated from the German by Newson, MW.

    Article  Google Scholar 

  • Hilbert, D. (1926). On the infinite. Mathematische Annalen, 95, 161–190. Translated from German by E Putnam and GJ Massey, in Benacerraf, P., & Putnam, H. (Eds.). (1983). Philosophy of mathematics: Selected readings (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Horsten, L. (2016). Philosophy of mathematics. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 edition), viewed 12 Feb 2017. https://plato.stanford.edu/archives/win2016/entries/philosophy-mathematics/

  • Krauss, L. (2012). A universe from nothing: Why there is something rather than nothing. New York: Free Press.

    Google Scholar 

  • Linnebo, Ø. (2013). Platonism in the philosophy of mathematics. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2013 Edition), viewed 26 Feb 2017. https://plato.stanford.edu/archives/win2013/entries/platonism-mathematics/

  • Linsky, B., & Zalta, E. N. (1995). Naturalized platonism versus platonized naturalism. Journal of Philosophy, 92(10), 525–555.

    Article  Google Scholar 

  • Linsky, B., & Zalta, E. N. (2006). What is neologicism? The Bulletin of Symbolic Logic, 12(1), 60–99.

    Article  Google Scholar 

  • Maddy, P. (1990). Realism in mathematics. Oxford: Clarendon Press.

    Google Scholar 

  • Mancosu, P. (Ed.). (2008). The philosophy of mathematical practice. Oxford: Oxford University Press.

    Google Scholar 

  • Mohr, H. (1977). Lectures on structure and significance of science. New York: Springer-Verlag. Reprinted 2013.

    Book  Google Scholar 

  • Musser, G. (2013). Does some deeper level of physics underlie quantum mechanics an interview with Nobelist Gerard ’t Hooft, viewed 1 Feb 2017. https://blogs.scientificamerican.com/critical-opalescence/does-some-deeper-level-of-physics-underlie-quantum-mechanics-an-interview-with-nobelist-gerard-e28099t-hooft/

  • Parsons, C. (1979/1980). Mathematical intuition. Proceedings of the Aristotelian Society, 80, 145–168.

    Google Scholar 

  • Paseau, A. (2007). Scientific platonism. In M. Leng, A. Paseau, & M. Potter (Eds.), Mathematical knowledge. Oxford: Oxford University Press.

    Google Scholar 

  • Pincock, C. (2009). Towards a philosophy of applied mathematics. In O. Bueno & O. Linnebo (Eds.), New waves in philosophy of mathematics (pp. 173–194). Basingstoke: Palgrave Macmillan.

    Chapter  Google Scholar 

  • Putnam, H. (1971). Philosophical logic. New York: Harper & Row.

    Google Scholar 

  • Quine, W. V. (1948). On what there is. Review of Metaphysics, 2, 21–38.

    Google Scholar 

  • Reid, C. (1996). Hilbert. New York: Springer-Verlag.

    Book  Google Scholar 

  • Ruelle, D. (2007). The mathematician’s brain. Princeton: Princeton University Press.

    Google Scholar 

  • Russell, B., & Whitehead, A. N. (1910). Principia mathematica (Vol. 1). Cambridge: Cambridge University Press.

    Google Scholar 

  • Smolin, L. (2000). Three roads to quantum gravity. London: Weidenfeld & Nicolson.

    Google Scholar 

  • Smoryński, C. (1977). The incompleteness theorems. In J. Barwise (Ed.), Handbook of mathematical logic (pp. 821–866). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Sokal, A. D. (1996). Transgressing the boundaries: Towards a transformative hermeneutics of quantum gravity. Social Text, 46/47, 217–252.

    Article  Google Scholar 

  • Sokal, A. D. (2008). Beyond the hoax: Science, philosophy and culture. Oxford: Oxford University Press.

    Google Scholar 

  • Stewart, I. (2007). Why beauty is truth. New York: Basic books.

    Google Scholar 

  • Tegmark, M. (2008). The mathematical universe. Foundations of Physics, 38(2), 101–150.

    Article  Google Scholar 

  • Tegmark, M. (2014). Our mathematical universe. New York: Vintage books.

    Google Scholar 

  • van Dalen, D. (2008). Luitzen Egbertus Jan Brouwer. In T. Gowers (Ed.), The Princeton companion to mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Weinberg, S. (1992). Dreams of a final theory. New York: Pantheon books.

    Google Scholar 

  • Wigner, E. (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communications on Pure and Applied Mathematics, 13, 1–14.

    Article  Google Scholar 

  • Wikipedia. (2017). Mathematical universe hypothesis, viewed 26 Feb 2017. https://en.wikipedia.org/wiki/Mathematical_universe_hypothesis

  • Wilson, P. L. (2014). The philosophy of applied mathematics. In S. Parc (Ed.), 50 visions of mathematics (pp. 176–179). Oxford: Oxford University Press.

    Google Scholar 

  • WolframAlpha. (2017). 2016 weather in Christchurch, New Zealand, viewed 21 Feb 2017. http://www.wolframalpha.com/input/?i=2016+weather+in+christchurch,+new+zealand

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilson, P. (2018). What the Applicability of Mathematics Says About Its Philosophy. In: Hansson, S. (eds) Technology and Mathematics. Philosophy of Engineering and Technology, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-93779-3_15

Download citation

Publish with us

Policies and ethics