Skip to main content

Robust Multilinear Decomposition of Low Rank Tensors

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10891))

Abstract

Although several methods are available to compute the multilinear rank of multi-way arrays, they are not sufficiently robust with respect to the noise. In this paper, we propose a novel Multilinear Tensor Decomposition (MTD) method, namely R-MTD (Robust MTD), which is able to identify the multilinear rank even in the presence of noise. The latter is based on sparsity and group sparsity of the core tensor imposed by means of the \(l_1\) norm and the mixed-norm, respectively. After several iterations of R-MTD, the underlying core tensor is sufficiently well estimated, which allows for an efficient use of the minimum description length approach and an accurate estimation of the multilinear rank. Computer results show the good behavior of R-MTD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wax, M., Kailath, T.: Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 33(2), 387–392 (1985)

    Article  MathSciNet  Google Scholar 

  2. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  3. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)

    Article  Google Scholar 

  4. Tucker, L.R.: Implications of factor analysis of three-way matrices for measurement of change. In: Problems in Measuring Change, pp. 122–137 (1963)

    Google Scholar 

  5. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MathSciNet  Google Scholar 

  6. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(\(\mathit{R}_{1}, \mathit{R}_{2},\ldots, \mathit{R}_{n}\)) approximation of higher-order tensors. SIAM J. Matrix Anal. 21(4), 1324–1342 (2000)

    Article  MathSciNet  Google Scholar 

  7. Yokota, T., Lee, N., Cichocki, A.: Robust multilinear tensor rank estimation using higher order singular value decomposition and information criteria. IEEE Trans. Signal Process. 65(5), 1196–1206 (2017)

    Article  MathSciNet  Google Scholar 

  8. Xie, Q., Zhao, Q., Meng, D., Xu, Z.: Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

  9. Han, X., Albera, L., Kachenoura, A., Senhadji, L., Shu, H.: Low rank canonical polyadic decomposition of tensors based on group sparsity. In: IEEE 25th European Signal Processing Conference (EUSIPCO), pp. 668–672 (2017)

    Google Scholar 

  10. Han, X., Albera, L., Kachenoura, A., Senhadji, L., Shu, H.: Block term decomposition with rank estimation using group sparsity. In: Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (2017)

    Google Scholar 

  11. Shu, X., Porikli, F., Ahuja, N.: Robust orthonormal subspace learning: efficient recovery of corrupted low-rank matrices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3874–3881 (2014)

    Google Scholar 

  12. Fazel, M.: Matrix rank minimization with applications. Ph.D. dissertation, Ph.D. thesis, Stanford University (2002)

    Google Scholar 

  13. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)

    Article  MathSciNet  Google Scholar 

  14. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. \(Trends^{\textregistered }\) Mach. Learn. 3(1), 1–122 (2011)

    Article  MathSciNet  Google Scholar 

  15. Petersen, K.B., Pedersen, M.S., et al.: The Matrix Cookbook. Technical University of Denmark, pp. 7–15 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Albera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, X., Albera, L., Kachenoura, A., Shu, H., Senhadji, L. (2018). Robust Multilinear Decomposition of Low Rank Tensors. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93764-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93763-2

  • Online ISBN: 978-3-319-93764-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics