Skip to main content

Cyber-physical Approach for Integrated Energy and Maintenance Management

  • Chapter
  • First Online:
Book cover Eco-Factories of the Future

Abstract

Because of nowadays complex and highly automated industrial production lines, every stoppage involves the danger of a massive economic harm. That’s why companies use already various production, quality and maintenance methods to reduce—or at least to handle—unforeseen stoppages. This paper presents a novel approach to improve the reliability of production fields by supporting predictive maintenance under the combination of systems from energy and maintenance management. Wireless sensor networks and mobile devices are integrated into a cyber-physical system to gain real-time transparency of energy demands within production environments. Being aware of challenges introducing cyber-physical systems into the brownfield, the proposed solution considers needs of data standardisations, IT security, staff participation, big data handling, long-term technical risk and cost-benefit estimations. The developed methods are considered by user-oriented design principles to deliver role-specific information. Therefore, the derivation of these informational requirements is based on production unique job activities. Allocating time and component-based energy demands whilst taking machine and environmental conditions into account enables a basis of comparison and a continuous improvement process of energy efficiency and maintenance. These demands are fulfilled by the methods of a continuous energy value stream mapping, an energy efficiency tracker and an integrating energy and maintenance monitoring. This proposed approach is based on the ESIMA project funded by the German Federal Ministry of Education and Research. The project aims for “Optimised resource efficiency in production through energy autarkic sensors and interaction with mobile users”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauernhansl T, Ten Hompel M, Vogel-Heuser B (2014a) Industrie 4.0 in produktion, automatisierung und logistik: anwendung technologien migration. Springer, Berlin, Heidelberg, New York, p 399

    Google Scholar 

  • Bauernhansl T, Ten Hompel M, Vogel-Heuser B (2014b) Industrie 4.0 in produktion, automatisierung und logistik: anwendung technologien migration. Springer, Berlin, Heidelberg, New York, p 525f

    Google Scholar 

  • Bogdanski G, Schönemann M, Thiede S, Andrew S, Herrmann C (2013) An extended energy value stream approach applied on the electronics industry. In: Emmanouilidis C, Taisch M, Kiritsis D (eds) Advances in production management systems. Competitive manufacturing for innovative products and services. APMS 2012. IFIP advances in information and communication technology, vol 397. Springer, Berlin, Heidelberg

    Google Scholar 

  • Bundesministerium für Bildung und Forschung (2018). http://www.bmbf.de/de/9072.php

  • Chamberlain S, Sharp H, Maiden N (2006) Towards a framework for integrating agile development and user-centred design. In: Marchesi M, Abrahamsson P, Succi G (eds) Extreme programming and agile processes in software engineering. 7th International Conference, XP 2006, Oulu, Finland, 17–22 June 2006. Proceedings 2006. Aufl. Springer, Berlin, Heidelberg, p 143f

    Chapter  Google Scholar 

  • DFKI (2014) 6th innovation day of the SmartFactoryKL

    Google Scholar 

  • DIN EN 13306 (2010–12) Maintenance—Maintenance terminology

    Google Scholar 

  • DIN EN ISO 9241-210 (2011) p 19

    Google Scholar 

  • DIN EN ISO 50001 (2011–12) Energy management systems—requirements with guidance for use

    Google Scholar 

  • Erlach K, Westkämper E (2009) Energiewertstrom – Der Weg zur energieffizienten Fabrik. Fraunhofer Verlag, Stuttgart. ISBN 978-3-8396-0010-8

    Google Scholar 

  • European Commission (2018). https://ec.europa.eu/clima/policies/strategies_en

  • Fallenbeck N, Eckert C (2014) IT-Sicherheit und cloud computing; Bauernhansl T, Ten Hompel M, Vogel-Heuser B. Industrie 4.0 in produktion, automatisierung und logistik: anwendung technologien migration. Springer, Berlin, Heidelberg, New York, p 398f

    Google Scholar 

  • Ganschar O, Gerlach S, Hämmerle M, Krause T, Schlund S (2013) Produktionsarbeit der Zukunft - Industrie 4.0. In: Spath D (ed) IAO, Stuttgart, Fraunhofer, p 56f

    Google Scholar 

  • Gorecky D, Loskyll M (2014) Mensch-maschine-interaktion im industrie 4.0-zeitalter. In: Bauernhansl T, Ten Hompel M, Vogel-Heuser B (eds) Industrie 4.0 in produktion, automatisierung und logistik: anwendung technologien migration. Springer, Berlin, Heidelberg, New York, p 525; Zamfirescu CB, Pirvu BC, Schlick J, Zühlke D (2013) Preliminary insides for an anthropocentric cyber-physical reference architecture of the smart factory. Stud Inform Control 22(3)

    Google Scholar 

  • Hermann M, Pentek T, Otto B (2015) Design principles for industrie 4.0 scenarios: a literature review. Dortmund, Technische Universität Dortmund, p 4f

    Google Scholar 

  • Herrmann Christoph (2010) Ganzheitliches life cycle management, nachhaltigkeit und lebenszyklusorientierung in unternehmen. Springer, Berlin, Heidelberg, New York, p 360f

    Book  Google Scholar 

  • Kara Sami, Mazhar Muhammad, Kaebernick Hartmut, Ahmed Noor-E-Alam (2005) Determining the reuse potential of components based on life cycle data. CIRP Ann Manuf Technol 54(1):1–4

    Article  Google Scholar 

  • May G et al (2015) Energy management in production: a novel method to develop key performance indicators for improving energy efficiency. J Appl Energy 149:46–61

    Article  Google Scholar 

  • Neef B, Schulze C, Herrmann C, Thiede S (2017) Integriertes Energie- und Instandhaltungsmanagement im Kontext Industrie 4.0—Verbesserte Energieeffizienz und Instandhaltung durch Smart Devices und energieautarke kabellose Sensoren, in: Industrie Management 4.0, Ausgabe 1/2017, Energie- und Ressourceneffiziente Produktion

    Google Scholar 

  • Posselt G et al (2014) Extending energy value stream models by the TBS dimension—applied on a multi product process chain in the railway industry. In: Proceedings of 21st CIRP conference on life cycle engineering 2014, pp 80–85

    Article  Google Scholar 

  • Posselt G (2015) Towards energy transparent factories. Springer. ISBN 978-3-329-20868-8

    Google Scholar 

  • Reichel J, Müller G, Mandelartz J (2009) Betriebliche instandhaltung. Springer, Berlin, Heidelberg, New York, p 137f

    Google Scholar 

  • Seera M, Lim CP, Nahavandi S, Loo CK (2014) Condition monitoring of induction motors: a review and an application of an ensemble of hybrid intelligent models. J Expert Syst Appl 41:4891–4903

    Article  Google Scholar 

  • Sheikh AK, Al-Sulaiman FA, Baseer MA (2005) Use of electrical power for online monitoring of tool condition. J Mater Process Technol 166:364–371

    Google Scholar 

  • Thiede S (2018) Environmental sustainability of cyber physical production systems. Procedia CIRP 69:644–649

    Article  Google Scholar 

  • Tole A (2013) Big data challenges. Database Syst J IV:3:31ff

    Google Scholar 

  • Umweltbundesamt (2018). https://www.umweltbundesamt.de/daten/energie/energie verbrauch-nach-energietraegern-sektoren

  • US EPA (2011) Lean, energy & climate toolkit. EPA-100-K-07-003

    Google Scholar 

  • Ziesemer M (2015) So sieht Industrie 4.0 aus - ZVEI stellt, Referenzarchitektur Industrie 4.0 (RAMI)‘ vor und definiert die, Industrie 4.0 Komponente, in: Technik und Wirtschaft für die deutsche Industrie—Produktion, Nr. 13, p 17

    Google Scholar 

Download references

Acknowledgements

This paper evolved of the research project ESIMA (improved resource efficiency by power-autonomous sensor systems and customised human–machine interaction) which is funded by the German Ministry of Education and Research (BMBF) within the “Energy self-sufficient mobility—reliable energy self-sufficient systems for the mobile human” research and development programme and managed by the Project Management Agency VDI/VDE IT. Visit http://www.esima-projekt.de/ for more information.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamin Neef or Christopher Schulze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neef, B., Schulze, C., Posselt, G., Herrmann, C., Thiede, S. (2019). Cyber-physical Approach for Integrated Energy and Maintenance Management. In: Thiede, S., Herrmann, C. (eds) Eco-Factories of the Future. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-93730-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93730-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93729-8

  • Online ISBN: 978-3-319-93730-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics